deformable_conv_v1_op.cc 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/deformable_conv_v1_op.h"
#include <memory>
#include "paddle/fluid/operators/conv_op.h"

namespace paddle {
namespace operators {
class DeformableConvV1OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(Tensor) The input of deformable conv op. "
             "The shape of input is "
             "[N, channel_in, H, W]");
    AddInput("Offset",
             "(Tensor) The input offset. "
             "The shape of the offset is "
             "[N, deformable_groups * kernel_w * kernel_h * 2, H, W");
    AddInput("Filter",
             "(Tensor) The Input Filter "
             "The shape of the wight is "
             "[num_filters, channel_in, kernel_h, kernel_w.");
    AddOutput("Output",
              "(Tensor) The output. "
              "The shape of the output tensor is "
              "[N, num_filters, out_height, out_width]].");
    AddAttr<std::vector<int>>("strides",
                              "(vector<int> default:{1, 1}), the "
                              "strides(h_stride, w_stride) of "
                              "convolution operator.")
        .SetDefault({1, 1});
    AddAttr<std::vector<int>>("paddings",
                              "(vector<int> default:{0,0}), the "
                              "paddings(h_pad, w_pad) of "
                              "convolution operator. ")
        .SetDefault({0, 0});
    AddAttr<std::vector<int>>("dilations",
                              "(vector<int> default:{1, 1}), the "
                              "dilations(h_dilation, w_dilation) of "
                              "convolution operator.")
        .SetDefault({1, 1});
    AddAttr<int>(
        "groups",
        "(int default:1), the groups number of the convolution operator. "
        "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
        "when group=2, the first half of the filters is only connected to the "
        "first half of the input channels, while the second half of the "
        "filters "
        "is only connected to the second half of the input channels.")
        .SetDefault(1);
    AddAttr<int>("deformable_groups",
                 "(int default:1), the number of the deformable groups.")
        .SetDefault(1);
    AddAttr<int>("im2col_step",
                 "im2col maximum number of image per computation")
        .SetDefault(64);
    AddComment(R"DOC(
**Deformable Convolution v1 Operator**

Deformable Convolution is a new method based Convolution which feature has offset 
in spatial location.

1. Get offset of each pixel in feature map with convolution layers which number 
   of channels should be double of weight size.

2. Add offset to pixel to get new location and the new value which are computed 
   directly through bilinear interpolation with four nearest pixel.

3. Get the product of pixel and weight as result

Compute 2-D deformable convolution on 4-D input.

Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:

$$
y(p) = \\sum_{k=1}^{K}{w_k * x(p + p_k + \\Delta p_k)}
$$

Where $$\\Delta p_k$$ is the learnable offset for the k-th location, respectively.

Refer to 'https://arxiv.org/abs/1703.06211 '<https://arxiv.org/abs/1703.06211>

Example:
  Input:
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
       Offset shape: $(N, 2 * deformable_groups, * H_f * W_f, H_{out}, W_{out})$
  Output:
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
                     where $H_{out}, W_{out}$ must be equal to $H_{in}, W_{in}$ respectively.
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
)DOC");
  }
};

class DeformableConvV1Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
117 118 119 120 121 122 123 124
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
                   "deformable_conv_v1");
    OP_INOUT_CHECK(ctx->HasInput("Offset"), "Input", "Offset",
                   "deformable_conv_v1");
    OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter",
                   "deformable_conv_v1");
    OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output",
                   "deformable_conv_v1");
125 126 127 128 129 130 131 132 133 134 135 136 137 138

    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");
    auto offset_dims = ctx->GetInputDim("Offset");

    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
    std::vector<int> dilations =
        ctx->Attrs().Get<std::vector<int>>("dilations");
    int groups = ctx->Attrs().Get<int>("groups");
    int deformable_groups = ctx->Attrs().Get<int>("deformable_groups");
    int im2col_step = ctx->Attrs().Get<int>("im2col_step");

    PADDLE_ENFORCE_EQ(
139 140 141 142 143 144
        in_dims.size(), 4,
        platform::errors::InvalidArgument(
            "Conv input should be 4-D tensor, get %u", in_dims.size()));
    PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                      platform::errors::InvalidArgument(
                          "Conv input dimension and filter dimension should be "
145
                          "the same. the difference is [%d] vs [%d]",
146
                          in_dims.size(), filter_dims.size()));
147 148
    PADDLE_ENFORCE_EQ(
        in_dims.size() - strides.size(), 2U,
149 150 151 152
        platform::errors::InvalidArgument(
            "Conv input dimension and strides "
            "dimension should be consistent., But received [%d]: [%d]",
            in_dims.size(), strides.size()));
153
    PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
154 155
                      platform::errors::InvalidArgument(
                          "Conv paddings dimension and Conv strides dimension "
156
                          "should be the same. The difference is [%d] vs [%d]",
157
                          paddings.size(), strides.size()));
158

159 160 161 162
    PADDLE_ENFORCE_EQ(
        in_dims[1], filter_dims[1] * groups,
        platform::errors::InvalidArgument(
            "The number of input channels should be equal to filter "
163 164
            "channels * groups. The difference is [%d]: [%d]",
            in_dims[1], filter_dims[1] * groups));
165 166
    PADDLE_ENFORCE_EQ(
        filter_dims[0] % groups, 0,
167 168 169 170 171 172 173 174 175 176
        platform::errors::InvalidArgument(
            "The number of output channels should be divided by groups. But"
            "received output channels: [%d], groups: [%d]",
            filter_dims[0], groups));
    PADDLE_ENFORCE_EQ(
        filter_dims[0] % deformable_groups, 0,
        platform::errors::InvalidArgument(
            "The number of output channels should be "
            "divided by deformable groups. But received [%d]: [%d]",
            filter_dims[0], deformable_groups));
177 178

    if (in_dims[0] > im2col_step) {
179 180 181 182 183
      PADDLE_ENFORCE_EQ(in_dims[0] % im2col_step, 0U,
                        platform::errors::InvalidArgument(
                            "Input batchsize must be smaller than or divide "
                            "im2col_step, But received [%d]: [%d]",
                            in_dims[0], im2col_step));
184 185 186
    }

    for (size_t i = 0; i < strides.size(); ++i) {
187 188
      PADDLE_ENFORCE_GT(strides[i], 0U, platform::errors::InvalidArgument(
                                            "stride %d size incorrect", i));
189 190
    }
    for (size_t i = 0; i < dilations.size(); ++i) {
191 192
      PADDLE_ENFORCE_GT(dilations[i], 0U, platform::errors::InvalidArgument(
                                              "dilation %d size incorrect", i));
193 194 195 196
    }

    std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
    for (size_t i = 0; i < strides.size(); ++i) {
C
chengjuntao 已提交
197 198 199 200 201 202 203 204 205 206
      if ((!ctx->IsRuntime()) &&
          (in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
        output_shape.push_back(-1);
      } else {
        output_shape.push_back(ConvOutputSize(in_dims[i + 2],
                                              filter_dims[i + 2], dilations[i],
                                              paddings[i], strides[i]));
      }
    }
    if (ctx->IsRuntime()) {
207 208 209 210 211
      PADDLE_ENFORCE_EQ(output_shape[1] % deformable_groups, 0U,
                        platform::errors::InvalidArgument(
                            "output num_filter must divide deformable group "
                            "size. But received [%d]: [%d]",
                            output_shape[1], deformable_groups));
C
chengjuntao 已提交
212 213
      PADDLE_ENFORCE_EQ(output_shape[2], offset_dims[2],
                        platform::errors::InvalidArgument(
214
                            "output height must equal to offset map height. "
215
                            "The difference is [%d]: [%d]",
216
                            output_shape[2], offset_dims[2]));
C
chengjuntao 已提交
217 218
      PADDLE_ENFORCE_EQ(output_shape[3], offset_dims[3],
                        platform::errors::InvalidArgument(
219
                            "output width must equal to offset map width. The "
220
                            "difference is [%d]: [%d]",
221
                            output_shape[3], offset_dims[3]));
222 223 224 225 226
      PADDLE_ENFORCE_EQ(offset_dims[1] % (filter_dims[2] * filter_dims[3]), 0U,
                        platform::errors::InvalidArgument(
                            "offset filter must divide deformable group size. "
                            "But received [%d]: [%d]",
                            offset_dims[1], filter_dims[2] * filter_dims[3]));
C
chengjuntao 已提交
227 228 229 230
      PADDLE_ENFORCE_EQ(
          offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
          deformable_groups,
          platform::errors::InvalidArgument(
231 232 233 234
              "offset filter must divide deformable group size. But received "
              "[%d]: [%d]",
              offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
              deformable_groups));
235
    }
236
    ctx->SetOutputDim("Output", pten::make_ddim(output_shape));
237 238 239 240 241
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
242 243 244
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
245 246 247
  }
};

H
hong 已提交
248 249
template <typename T>
class DeformableConvV1GradOpMaker : public framework::SingleGradOpMaker<T> {
250
 public:
H
hong 已提交
251
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
252 253

 protected:
254
  void Apply(GradOpPtr<T> op) const override {
255
    op->SetType("deformable_conv_v1_grad");
H
hong 已提交
256 257 258 259
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Offset", this->Input("Offset"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
260

H
hong 已提交
261 262 263
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Offset"), this->InputGrad("Offset"));
264

H
hong 已提交
265
    op->SetAttrMap(this->Attrs());
266 267 268 269 270 271 272 273 274 275 276 277
  }
};

class DeformableConvV1GradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");
    auto offset_dims = ctx->GetInputDim("Offset");

278 279
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Output")), "Input",
                   "Output@Grad", "deformable_conv_v1_grad");
280 281 282 283 284 285 286 287 288 289 290 291 292 293
    if (ctx->HasOutput(framework::GradVarName("Input"))) {
      ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Offset"))) {
      ctx->SetOutputDim(framework::GradVarName("Offset"), offset_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
294 295 296
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
297 298 299 300 301 302 303 304
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(deformable_conv_v1, ops::DeformableConvV1Op,
                  ops::DeformableConvV1OpMaker,
H
hong 已提交
305 306
                  ops::DeformableConvV1GradOpMaker<paddle::framework::OpDesc>,
                  ops::DeformableConvV1GradOpMaker<paddle::imperative::OpBase>);
307 308 309
REGISTER_OPERATOR(deformable_conv_v1_grad, ops::DeformableConvV1GradOp);

REGISTER_OP_CPU_KERNEL(deformable_conv_v1,
310 311
                       ops::DeformableConvV1CPUKernel<float>,
                       ops::DeformableConvV1CPUKernel<double>);
312
REGISTER_OP_CPU_KERNEL(deformable_conv_v1_grad,
313 314
                       ops::DeformableConvV1GradCPUKernel<float>,
                       ops::DeformableConvV1GradCPUKernel<double>);