deformable_conv_op.h 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Part of the following code in this file refs to
// https://github.com/msracver/Deformable-ConvNets/blob/master/faster_rcnn/operator_cxx/deformable_convolution.cu
//
// Copyright (c) 2017 Microsoft
// Licensed under The Apache-2.0 License [see LICENSE for details]
// \file deformable_psroi_pooling.cu
// \brief
// \author Yi Li, Guodong Zhang, Jifeng Dai

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/deformable_conv_func.h"
29
#include "paddle/pten/kernels/funcs/blas/blas.h"
30
#include "paddle/pten/kernels/funcs/math_function.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using CPUDeviceContext = platform::CPUDeviceContext;

template <typename T>
void ModulatedDeformableCol2imCPUKernel(
    const int num_kernels, const T* data_col, const T* data_offset,
    const T* data_mask, const int channels, const int height, const int width,
    const int kernel_h, const int kernel_w, const int pad_h, const int pad_w,
    const int stride_h, const int stride_w, const int dilation_h,
    const int dilation_w, const int channel_per_deformable_group,
    const int batch_size, const int deformable_group, const int height_col,
    const int width_col, T* grad_im) {
47
  for (int thread = 0; thread < num_kernels; thread++) {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    const int j = (thread / width_col / height_col / batch_size) % kernel_w;
    const int i =
        (thread / width_col / height_col / batch_size / kernel_w) % kernel_h;
    const int c =
        thread / width_col / height_col / batch_size / kernel_w / kernel_h;

    const int deformable_group_index = c / channel_per_deformable_group;

    int w_out = thread % width_col;
    int h_out = (thread / width_col) % height_col;
    int b = (thread / width_col / height_col) % batch_size;
    int w_in = w_out * stride_w - pad_w;
    int h_in = h_out * stride_h - pad_h;

    const T* data_offset_ptr = data_offset +
                               (b * deformable_group + deformable_group_index) *
                                   2 * kernel_h * kernel_w * height_col *
                                   width_col;
    const T* data_mask_ptr = data_mask +
                             (b * deformable_group + deformable_group_index) *
                                 kernel_h * kernel_w * height_col * width_col;
    const int data_offset_h_ptr =
        ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
    const int data_offset_w_ptr =
        ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
    const int data_mask_hw_ptr =
        ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
    const T offset_h = data_offset_ptr[data_offset_h_ptr];
    const T offset_w = data_offset_ptr[data_offset_w_ptr];
    const T mask = data_mask_ptr[data_mask_hw_ptr];
    const T cur_inv_h_data = h_in + i * dilation_h + offset_h;
    const T cur_inv_w_data = w_in + j * dilation_w + offset_w;

    const T cur_top_grad = data_col[thread] * mask;
    const int cur_h = static_cast<int>(cur_inv_h_data);
    const int cur_w = static_cast<int>(cur_inv_w_data);
    for (int dy = -2; dy <= 2; dy++) {
      for (int dx = -2; dx <= 2; dx++) {
        if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
            cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
            abs(cur_inv_w_data - (cur_w + dx)) < 1) {
          int cur_bottom_grad_pos =
              ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
          T weight =
              DmcnGetGradientWeight(cur_inv_h_data, cur_inv_w_data, cur_h + dy,
                                    cur_w + dx, height, width);

          *(grad_im + cur_bottom_grad_pos) =
              *(grad_im + cur_bottom_grad_pos) + weight * cur_top_grad;
        }
      }
    }
  }
}

template <typename T>
static inline void ModulatedDeformableCol2imCPU(
    const platform::CPUDeviceContext& ctx, const T* data_col,
    const T* data_offset, const T* data_mask,
    const std::vector<int64_t> im_shape, const std::vector<int64_t> col_shape,
    const std::vector<int64_t> kernel_shape, const std::vector<int> pad,
    const std::vector<int> stride, const std::vector<int> dilation,
    const int deformable_group, T* grad_im) {
  int channel_per_deformable_group = im_shape[0] / deformable_group;
  int num_kernels = col_shape[0] * col_shape[1] * col_shape[2] * col_shape[3];

  ModulatedDeformableCol2imCPUKernel(
      num_kernels, data_col, data_offset, data_mask, im_shape[0], im_shape[1],
      im_shape[2], kernel_shape[2], kernel_shape[3], pad[0], pad[1], stride[0],
      stride[1], dilation[0], dilation[1], channel_per_deformable_group,
      col_shape[1], deformable_group, col_shape[2], col_shape[3], grad_im);
}

template <typename T>
void ModulatedDeformableCol2imCoordCPUKernel(
    const int num_kernels, const T* data_col, const T* data_im,
    const T* data_offset, const T* data_mask, const int channels,
    const int height, const int width, const int kernel_h, const int kernel_w,
    const int pad_h, const int pad_w, const int stride_h, const int stride_w,
    const int dilation_h, const int dilation_w,
    const int channel_per_deformable_group, const int batch_size,
    const int offset_channels, const int deformable_group, const int height_col,
    const int width_col, T* grad_offset, T* grad_mask) {
131
  for (int i = 0; i < num_kernels; i++) {
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    T val = 0, mval = 0;
    const int w = i % width_col;
    const int h = (i / width_col) % height_col;
    const int c = (i / width_col / height_col) % offset_channels;
    const int b = (i / width_col / height_col) / offset_channels;

    const int deformable_group_index = c / (2 * kernel_h * kernel_w);
    const int col_step = kernel_h * kernel_w;
    int cnt = 0;
    const T* data_col_ptr = data_col +
                            deformable_group_index *
                                channel_per_deformable_group * batch_size *
                                width_col * height_col;
    const T* data_im_ptr = data_im +
                           (b * deformable_group + deformable_group_index) *
                               channel_per_deformable_group / kernel_h /
                               kernel_w * height * width;
    const T* data_offset_ptr = data_offset +
                               (b * deformable_group + deformable_group_index) *
                                   2 * kernel_h * kernel_w * height_col *
                                   width_col;
    const T* data_mask_ptr = data_mask +
                             (b * deformable_group + deformable_group_index) *
                                 kernel_h * kernel_w * height_col * width_col;

    const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;

    for (int col_c = offset_c / 2; col_c < channel_per_deformable_group;
         col_c += col_step) {
      const int col_pos =
          (((col_c * batch_size + b) * height_col) + h) * width_col + w;
      const int bp_dir = offset_c % 2;

      int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
      int i =
          (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
      int w_out = col_pos % width_col;
      int h_out = (col_pos / width_col) % height_col;
      int w_in = w_out * stride_w - pad_w;
      int h_in = h_out * stride_h - pad_h;
      const int data_offset_h_ptr =
          (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
      const int data_offset_w_ptr =
          (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
           w_out);
      const int data_mask_hw_ptr =
          (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
      const T offset_h = data_offset_ptr[data_offset_h_ptr];
      const T offset_w = data_offset_ptr[data_offset_w_ptr];
      const T mask = data_mask_ptr[data_mask_hw_ptr];
      T inv_h = h_in + i * dilation_h + offset_h;
      T inv_w = w_in + j * dilation_w + offset_w;
      if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width) {
        inv_h = inv_w = -2;
      } else {
        mval += data_col_ptr[col_pos] *
                DmcnIm2colBilinear(data_im_ptr + cnt * height * width, width,
                                   height, width, inv_h, inv_w);
      }
      const T weight = DmcnGetCoordinateWeight(
          inv_h, inv_w, height, width, data_im_ptr + cnt * height * width,
          width, bp_dir);
      val += weight * data_col_ptr[col_pos] * mask;
      cnt += 1;
    }
    grad_offset[i] = val;
    if (offset_c % 2 == 0)
      grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h *
                      kernel_w +
                  offset_c / 2) *
                     height_col +
                 h) *
                    width_col +
                w] = mval;
  }
}

template <typename T>
static inline void ModulatedDeformableCol2imCoordCPU(
    const platform::CPUDeviceContext& ctx, const T* data_col, const T* data_im,
    const T* data_offset, const T* data_mask,
    const std::vector<int64_t> im_shape, const std::vector<int64_t> col_shape,
    const std::vector<int64_t> kernel_shape, const std::vector<int> paddings,
    const std::vector<int> strides, const std::vector<int> dilations,
    const int deformable_groups, T* grad_offset, T* grad_mask) {
  int num_kernels = 2 * kernel_shape[2] * kernel_shape[3] * col_shape[1] *
                    col_shape[2] * col_shape[3] * deformable_groups;
  int channel_per_deformable_group = col_shape[0] / deformable_groups;

  ModulatedDeformableCol2imCoordCPUKernel(
      num_kernels, data_col, data_im, data_offset, data_mask, im_shape[0],
      im_shape[1], im_shape[2], kernel_shape[2], kernel_shape[3], paddings[0],
      paddings[1], strides[0], strides[1], dilations[0], dilations[1],
      channel_per_deformable_group, col_shape[1],
      2 * kernel_shape[2] * kernel_shape[3] * deformable_groups,
      deformable_groups, col_shape[2], col_shape[3], grad_offset, grad_mask);
}

template <typename T>
void ModulatedDeformableIm2colCPUKernel(
    const int num_kernels, const T* data_im, const T* data_offset,
    const T* data_mask, const int height, const int width, const int kernel_h,
    const int kernel_w, const int pad_h, const int pad_w, const int stride_h,
    const int stride_w, const int dilation_h, const int dilation_w,
    const int channel_per_deformable_group, const int batch_size,
    const int num_channels, const int deformable_group, const int height_col,
    const int width_col, T* data_col) {
239
  for (int i = 0; i < num_kernels; i++) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    const int w_col = i % width_col;
    const int h_col = (i / width_col) % height_col;
    const int b_col = (i / width_col) / height_col % batch_size;
    const int c_im = (i / width_col / height_col) / batch_size;
    const int c_col = c_im * kernel_h * kernel_w;

    const int deformable_group_index = c_im / channel_per_deformable_group;

    const int h_in = h_col * stride_h - pad_h;
    const int w_in = w_col * stride_w - pad_w;

    T* data_col_ptr =
        data_col +
        ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
    const T* data_im_ptr =
        data_im + (b_col * num_channels + c_im) * height * width;
    const T* data_offset_ptr =
        data_offset +
        (b_col * deformable_group + deformable_group_index) * 2 * kernel_h *
            kernel_w * height_col * width_col;
    const T* data_mask_ptr =
        data_mask +
        (b_col * deformable_group + deformable_group_index) * kernel_h *
            kernel_w * height_col * width_col;

    for (int i = 0; i < kernel_h; ++i) {
      for (int j = 0; j < kernel_w; ++j) {
        const int data_offset_h_ptr =
            ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
        const int data_offset_w_ptr =
            ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
            w_col;
        const int data_mask_hw_ptr =
            ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;

        const T offset_h = data_offset_ptr[data_offset_h_ptr];
        const T offset_w = data_offset_ptr[data_offset_w_ptr];
        const T mask = data_mask_ptr[data_mask_hw_ptr];
        T val = static_cast<T>(0);
        const T h_im = h_in + i * dilation_h + offset_h;
        const T w_im = w_in + j * dilation_w + offset_w;
        if (h_im > -1 && w_im > -1 && h_im < height && w_im < width) {
          val =
              DmcnIm2colBilinear(data_im_ptr, width, height, width, h_im, w_im);
        }
        *data_col_ptr = val * mask;
        data_col_ptr += batch_size * height_col * width_col;
      }
    }
  }
}

template <typename T>
static inline void ModulatedDeformableIm2colCPU(
    const platform::CPUDeviceContext& ctx, const T* data_im,
    const T* data_offset, const T* data_mask,
    const std::vector<int64_t> im_shape, const std::vector<int64_t> col_shape,
    const std::vector<int64_t> filter_shape, const std::vector<int> paddings,
    const std::vector<int> strides, const std::vector<int> dilations,
    const int deformable_groups, T* data_col) {
  int channel_per_deformable_group = im_shape[0] / deformable_groups;
  int num_kernels = im_shape[0] * col_shape[1] * col_shape[2] * col_shape[3];

  // get outputs of im2col with offset by bilinear interpolation
  ModulatedDeformableIm2colCPUKernel(
      num_kernels, data_im, data_offset, data_mask, im_shape[1], im_shape[2],
      filter_shape[2], filter_shape[3], paddings[0], paddings[1], strides[0],
      strides[1], dilations[0], dilations[1], channel_per_deformable_group,
      col_shape[1], im_shape[0], deformable_groups, col_shape[2], col_shape[3],
      data_col);
}

template <typename T>
void FilterGradAddupCPUKernel(const int nthreads, const int n, const int height,
                              const int width, const T* dweight_3d,
                              T* filter_grad) {
316
  for (int i = 0; i < nthreads; i++) {
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    filter_grad[i] = filter_grad[i] + dweight_3d[i];
  }
}

template <typename T>
class DeformableConvCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto* offset = ctx.Input<Tensor>("Offset");
    auto* mask = ctx.Input<Tensor>("Mask");
    Tensor filter = *ctx.Input<Tensor>("Filter");
    Tensor* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());

    auto& dev_ctx = ctx.template device_context<CPUDeviceContext>();

    const int groups = ctx.Attr<int>("groups");
    const int deformable_groups = ctx.Attr<int>("deformable_groups");
    const int im2col_step = ctx.Attr<int>("im2col_step");
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    const std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    const std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");

    const int batch_size = static_cast<int>(input->dims()[0]);

343 344
    std::vector<int64_t> filter_shape_vec(pten::vectorize(filter.dims()));
    std::vector<int64_t> output_shape_vec(pten::vectorize(output->dims()));
345 346 347 348 349 350 351 352 353

    // col_shape_vec: {c_i * k_h * k_w, im2col_step, o_h, o_w}
    std::vector<int64_t> col_buffer_shape_vec(filter_shape_vec.size());
    col_buffer_shape_vec[0] =
        input->dims()[1] * filter.dims()[2] * filter.dims()[3];
    col_buffer_shape_vec[1] = im2col_step;
    for (size_t j = 0; j < filter_shape_vec.size() - 2; ++j) {
      col_buffer_shape_vec[j + 2] = output_shape_vec[j + 2];
    }
354
    framework::DDim col_shape(pten::make_ddim(col_buffer_shape_vec));
355 356 357
    std::vector<int64_t> output_buffer_shape_vec(1);
    output_buffer_shape_vec[0] = batch_size * output_shape_vec[1] *
                                 output_shape_vec[2] * output_shape_vec[3];
358
    framework::DDim output_shape(pten::make_ddim(output_buffer_shape_vec));
359 360 361 362 363 364 365 366 367 368 369
    Tensor col_buffer;
    Tensor output_buffer;
    col_buffer = ctx.AllocateTmpTensor<T, CPUDeviceContext>(col_shape, dev_ctx);
    output_buffer =
        ctx.AllocateTmpTensor<T, CPUDeviceContext>(output_shape, dev_ctx);
    int64_t M = output_shape_vec[1] / groups;
    int64_t N = im2col_step * output_shape_vec[2] * output_shape_vec[3];
    int64_t K =
        input->dims()[1] * filter_shape_vec[2] * filter_shape_vec[3] / groups;

    Tensor weight_3d;
370
    weight_3d.ShareDataWith(filter).Resize(pten::make_ddim({groups, M, K}));
371 372
    Tensor col_buffer_3d;
    col_buffer_3d.ShareDataWith(col_buffer)
373
        .Resize(pten::make_ddim({groups, K, N}));
374 375
    Tensor output_4d;
    output_4d.ShareDataWith(output_buffer)
376
        .Resize(pten::make_ddim({batch_size / im2col_step, groups, M, N}));
377 378
    output_4d.mutable_data<T>(ctx.GetPlace());
    framework::DDim input_shape =
379 380
        pten::slice_ddim(input->dims(), 1, input->dims().size());
    std::vector<int64_t> input_shape_vec = pten::vectorize(input_shape);
381 382 383
    int input_dim = input->numel() / input->dims()[0];
    int input_offset_dim = offset->numel() / offset->dims()[0];
    int input_mask_dim = mask->numel() / mask->dims()[0];
384
    auto blas = pten::funcs::GetBlas<CPUDeviceContext, T>(dev_ctx);
385 386 387 388 389 390 391 392 393 394 395 396 397
    const T* input_ptr = input->data<T>();
    const T* offset_ptr = offset->data<T>();
    const T* mask_ptr = mask->data<T>();
    col_buffer.mutable_data<T>(ctx.GetPlace());
    T* col_buffer_ptr = col_buffer.data<T>();
    for (int i = 0; i < batch_size / im2col_step; ++i) {
      ModulatedDeformableIm2colCPU(
          dev_ctx, input_ptr + i * im2col_step * input_dim,
          offset_ptr + i * im2col_step * input_offset_dim,
          mask_ptr + i * im2col_step * input_mask_dim, input_shape_vec,
          col_buffer_shape_vec, filter_shape_vec, paddings, strides, dilations,
          deformable_groups, col_buffer_ptr);
      Tensor output_3d = output_4d.Slice(i, i + 1).Resize(
398
          pten::slice_ddim(output_4d.dims(), 1, output_4d.dims().size()));
399 400
      // get the product of pixel and weight
      for (int g = 0; g < groups; ++g) {
401 402
        Tensor weight_3d_slice = weight_3d.Slice(g, g + 1).Resize(
            pten::slice_ddim(weight_3d.dims(), 1, weight_3d.dims().size()));
403
        Tensor col_buffer_3d_slice =
404
            col_buffer_3d.Slice(g, g + 1).Resize(pten::slice_ddim(
405
                col_buffer_3d.dims(), 1, col_buffer_3d.dims().size()));
406 407
        Tensor output_3d_slice = output_3d.Slice(g, g + 1).Resize(
            pten::slice_ddim(output_3d.dims(), 1, output_3d.dims().size()));
408 409 410 411 412
        blas.MatMul(weight_3d_slice, false, col_buffer_3d_slice, false, T(1.0),
                    &output_3d_slice, T(0.0));
      }
    }
    output->ShareDataWith(output_buffer)
413
        .Resize(pten::make_ddim(output_shape_vec));
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
  }
};

template <typename T>
class DeformableConvGradCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    Tensor* offset_grad = ctx.Output<Tensor>(framework::GradVarName("Offset"));
    Tensor* mask_grad = ctx.Output<Tensor>(framework::GradVarName("Mask"));

    const Tensor* input = ctx.Input<Tensor>("Input");
    Tensor offset = *ctx.Input<Tensor>("Offset");
    Tensor mask = *ctx.Input<Tensor>("Mask");
    Tensor filter = *ctx.Input<Tensor>("Filter");
    if (!input_grad && !filter_grad && !offset_grad && !mask_grad) return;

    int groups = ctx.Attr<int>("groups");
    int deformable_groups = ctx.Attr<int>("deformable_groups");
    int im2col_step = ctx.Attr<int>("im2col_step");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");

    auto& dev_ctx = ctx.template device_context<CPUDeviceContext>();
    const int batch_size = static_cast<int>(input->dims()[0]);

    framework::DDim input_shape =
445 446 447 448
        pten::slice_ddim(input->dims(), 1, input->dims().size());
    std::vector<int64_t> input_shape_vec = pten::vectorize(input_shape);
    std::vector<int64_t> filter_shape_vec(pten::vectorize(filter.dims()));
    std::vector<int64_t> output_shape_vec(pten::vectorize(output_grad->dims()));
449 450 451 452 453 454 455 456

    std::vector<int64_t> col_buffer_shape_vec(filter_shape_vec.size());
    col_buffer_shape_vec[0] =
        input->dims()[1] * filter.dims()[2] * filter.dims()[3];
    col_buffer_shape_vec[1] = im2col_step;
    for (size_t j = 0; j < filter_shape_vec.size() - 2; ++j) {
      col_buffer_shape_vec[j + 2] = output_shape_vec[j + 2];
    }
457
    framework::DDim col_shape(pten::make_ddim(col_buffer_shape_vec));
458 459 460
    std::vector<int64_t> output_buffer_shape_vec(1);
    output_buffer_shape_vec[0] = batch_size * output_shape_vec[1] *
                                 output_shape_vec[2] * output_shape_vec[3];
461
    framework::DDim output_shape(pten::make_ddim(output_buffer_shape_vec));
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    Tensor col_buffer;
    Tensor output_buffer;
    col_buffer = ctx.AllocateTmpTensor<T, CPUDeviceContext>(col_shape, dev_ctx);
    output_buffer =
        ctx.AllocateTmpTensor<T, CPUDeviceContext>(output_shape, dev_ctx);

    output_buffer.ShareDataWith(*output_grad);

    int64_t M =
        input_shape_vec[0] / groups * filter_shape_vec[2] * filter_shape_vec[3];
    int64_t N = im2col_step * output_shape_vec[2] * output_shape_vec[3];
    int64_t K = output_shape_vec[1] / groups;

    framework::DDim weight_3d_shape = {groups, K, M};
    framework::DDim out_grad_4d_shape = {batch_size / im2col_step, groups, K,
                                         N};
    framework::DDim col_buffer_3d_shape = {groups, M, N};
    framework::DDim filter_grad_shape = {groups, K, M};

    Tensor weight_3d;
    weight_3d.ShareDataWith(filter).Resize(weight_3d_shape);
    Tensor out_grad_4d;
    out_grad_4d.ShareDataWith(output_buffer).Resize(out_grad_4d_shape);
    Tensor col_buffer_3d;
    col_buffer_3d.ShareDataWith(col_buffer).Resize(col_buffer_3d_shape);

488
    pten::funcs::SetConstant<CPUDeviceContext, T> set_zero;
489
    auto blas = pten::funcs::GetBlas<CPUDeviceContext, T>(dev_ctx);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

    col_buffer.mutable_data<T>(ctx.GetPlace());
    col_buffer_3d.mutable_data<T>(ctx.GetPlace());
    out_grad_4d.mutable_data<T>(ctx.GetPlace());

    int input_dim = input->numel() / input->dims()[0];
    int input_offset_dim = offset.numel() / offset.dims()[0];
    int input_mask_dim = mask.numel() / mask.dims()[0];

    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
      filter_grad->Resize(filter_grad_shape);
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
    }

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, input_grad, static_cast<T>(0));
    }

    if (offset_grad && mask_grad) {
      offset_grad->mutable_data<T>(ctx.GetPlace());
      mask_grad->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, offset_grad, static_cast<T>(0));
      set_zero(dev_ctx, mask_grad, static_cast<T>(0));
    }

    for (int i = 0; i < batch_size / im2col_step; ++i) {
518 519
      Tensor out_grad_3d = out_grad_4d.Slice(i, i + 1).Resize(
          pten::slice_ddim(out_grad_4d.dims(), 1, out_grad_4d.dims().size()));
520
      for (int g = 0; g < groups; ++g) {
521 522 523 524
        Tensor weight_3d_slice = weight_3d.Slice(g, g + 1).Resize(
            pten::slice_ddim(weight_3d.dims(), 1, weight_3d.dims().size()));
        Tensor out_grad_3d_slice = out_grad_3d.Slice(g, g + 1).Resize(
            pten::slice_ddim(out_grad_3d.dims(), 1, out_grad_3d.dims().size()));
525
        Tensor col_buffer_3d_slice =
526
            col_buffer_3d.Slice(g, g + 1).Resize(pten::slice_ddim(
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                col_buffer_3d.dims(), 1, col_buffer_3d.dims().size()));

        blas.MatMul(weight_3d_slice, true, out_grad_3d_slice, false, T(1.0),
                    &col_buffer_3d_slice, T(0.0));
      }
      col_buffer.Resize(col_shape);

      T* col_buffer_ptr = col_buffer.data<T>();
      const T* input_ptr = input->data<T>();
      const T* offset_ptr = offset.data<T>();
      const T* mask_ptr = mask.data<T>();

      if (mask_grad && offset_grad) {
        T* offset_grad_ptr = offset_grad->data<T>();
        T* mask_grad_ptr = mask_grad->data<T>();
        // get grad of offset and mask
        ModulatedDeformableCol2imCoordCPU(
            ctx.template device_context<CPUDeviceContext>(), col_buffer_ptr,
            input_ptr + i * im2col_step * input_dim,
            offset_ptr + i * im2col_step * input_offset_dim,
            mask_ptr + i * im2col_step * input_mask_dim, input_shape_vec,
            col_buffer_shape_vec, filter_shape_vec, paddings, strides,
            dilations, deformable_groups,
            offset_grad_ptr + i * im2col_step * input_offset_dim,
            mask_grad_ptr + i * im2col_step * input_mask_dim);
      }
      if (input_grad) {
        T* input_grad_ptr = input_grad->data<T>();
        // get grad of input
        ModulatedDeformableCol2imCPU(
            ctx.template device_context<CPUDeviceContext>(), col_buffer_ptr,
            offset_ptr + i * im2col_step * input_offset_dim,
            mask_ptr + i * im2col_step * input_mask_dim, input_shape_vec,
            col_buffer_shape_vec, filter_shape_vec, paddings, strides,
            dilations, deformable_groups,
            input_grad_ptr + i * im2col_step * input_dim);
        input_grad->Resize(input->dims());
      }

      ModulatedDeformableIm2colCPU(
          ctx.template device_context<CPUDeviceContext>(),
          input_ptr + i * im2col_step * input_dim,
          offset_ptr + i * im2col_step * input_offset_dim,
          mask_ptr + i * im2col_step * input_mask_dim, input_shape_vec,
          col_buffer_shape_vec, filter_shape_vec, paddings, strides, dilations,
          deformable_groups, col_buffer_ptr);

      col_buffer_3d.Resize(col_buffer_3d_shape);

      if (filter_grad) {
        Tensor dweight_3d;
        dweight_3d = ctx.AllocateTmpTensor<T, CPUDeviceContext>(
            filter_grad_shape, dev_ctx);
        for (int g = 0; g < groups; ++g) {
          Tensor out_grad_3d_slice =
582
              out_grad_3d.Slice(g, g + 1).Resize(pten::slice_ddim(
583 584
                  out_grad_3d.dims(), 1, out_grad_3d.dims().size()));
          Tensor col_buffer_3d_slice =
585
              col_buffer_3d.Slice(g, g + 1).Resize(pten::slice_ddim(
586
                  col_buffer_3d.dims(), 1, col_buffer_3d.dims().size()));
587 588
          Tensor dweight_3d_slice = dweight_3d.Slice(g, g + 1).Resize(
              pten::slice_ddim(dweight_3d.dims(), 1, dweight_3d.dims().size()));
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

          blas.MatMul(out_grad_3d_slice, false, col_buffer_3d_slice, true,
                      T(1.0), &dweight_3d_slice, T(0.0));
        }
        // update grad of weights
        FilterGradAddupCPUKernel(dweight_3d.numel(), groups, K, M,
                                 dweight_3d.data<T>(), filter_grad->data<T>());
      }
    }
    if (filter_grad) {
      filter_grad->Resize(filter.dims());
    }
  }
};

}  // namespace operators
}  // namespace paddle