cuda_allocator.cc 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/allocation/cuda_allocator.h"
16 17

#ifdef PADDLE_WITH_CUDA
18 19
#include <cuda.h>
#include <cuda_runtime.h>
20 21 22 23 24 25
#endif

#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#endif

26
#include <string>
Y
Yu Yang 已提交
27
#include "paddle/fluid/platform/cuda_device_guard.h"
28
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
29
#include "paddle/fluid/platform/enforce.h"
30 31 32 33

namespace paddle {
namespace memory {
namespace allocation {
Y
Yu Yang 已提交
34
bool CUDAAllocator::IsAllocThreadSafe() const { return true; }
35
void CUDAAllocator::FreeImpl(pten::Allocation* allocation) {
36
  PADDLE_ENFORCE_EQ(
37
      allocation->place(), place_,
38 39
      platform::errors::PermissionDenied(
          "GPU memory is freed in incorrect device. This may be a bug"));
40 41
  platform::RecordedGpuFree(allocation->ptr(), allocation->size(),
                            place_.device);
Y
Yu Yang 已提交
42 43
  delete allocation;
}
Z
Zeng Jinle 已提交
44

45
pten::Allocation* CUDAAllocator::AllocateImpl(size_t size) {
46 47
  std::call_once(once_flag_, [this] { platform::SetDeviceId(place_.device); });

48
  void* ptr;
49
  auto result = platform::RecordedGpuMalloc(&ptr, size, place_.device);
50
  if (LIKELY(result == gpuSuccess)) {
51
    return new Allocation(ptr, size, platform::Place(place_));
52
  }
53

54
  size_t avail, total, actual_avail, actual_total;
55
  bool is_limited = platform::RecordedGpuMemGetInfo(
56
      &avail, &total, &actual_avail, &actual_total, place_.device);
57
  size_t allocated = total - avail;
58

59 60 61 62 63 64 65 66 67 68
  std::string err_msg;
  if (is_limited) {
    auto limit_size = (total >> 20);
    err_msg = string::Sprintf(
        "Or set environment variable `FLAGS_gpu_memory_limit_mb` to a larger "
        "value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the maximum "
        "GPU memory usage is limited to %d MB.\n"
        "   The command is `export FLAGS_gpu_memory_limit_mb=xxx`.",
        limit_size, limit_size);
  }
69

70 71 72 73 74 75 76 77
  std::string managed_memory_msg;
  if (platform::IsGPUManagedMemoryOversubscriptionSupported(place_.device)) {
    managed_memory_msg = string::Sprintf(
        "If the above ways do not solve the out of memory problem, you can try "
        "to use CUDA managed memory. The command is `export "
        "FLAGS_use_cuda_managed_memory=false`.");
  }

78
  PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
79
      "\n\nOut of memory error on GPU %d. "
80
      "Cannot allocate %s memory on GPU %d, %s memory has been allocated and "
81 82 83
      "available memory is only %s.\n\n"
      "Please check whether there is any other process using GPU %d.\n"
      "1. If yes, please stop them, or start PaddlePaddle on another GPU.\n"
84
      "2. If no, please decrease the batch size of your model. %s\n%s\n",
85
      place_.device, string::HumanReadableSize(size), place_.device,
86
      string::HumanReadableSize(allocated), string::HumanReadableSize(avail),
87
      place_.device, err_msg, managed_memory_msg));
88
}
Z
Zeng Jinle 已提交
89

90 91 92
}  // namespace allocation
}  // namespace memory
}  // namespace paddle