fc_mkldnn_op.cc 21.2 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/operators/fc_op.h"
19
#include "paddle/fluid/platform/profiler/event_tracing.h"
20
#include "paddle/phi/backends/onednn/onednn_reuse.h"
21

M
mozga-intel 已提交
22 23 24
namespace paddle {
namespace operators {

25
using framework::ExecutionContext;
26
using phi::OneDNNContext;
27 28
using phi::funcs::OneDNNGetDataType;
using phi::funcs::to_void_cast;
29

30 31 32 33 34 35
struct InnerProductCache {
  dnnl::inner_product_forward inner_product_p;
  dnnl::memory src_mem;
  dnnl::memory weights_mem;
  dnnl::memory bias_mem;
  dnnl::memory dst_mem;
36 37 38
  dnnl::memory src_scales_mem;
  dnnl::memory wei_scales_mem;
  dnnl::memory dst_scales_mem;
39
};
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

std::tuple<std::vector<float>,
           std::vector<float>,
           std::vector<float>,
           std::vector<float>>
GetDNNLScales(const ExecutionContext& ctx) {
  auto scale_in_data = ctx.Attr<float>("Scale_in");
  auto scale_out = ctx.Attr<float>("Scale_out");
  auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");

  std::vector<float> dnnl_src_scales = {1.f / scale_in_data};
  size_t count = scale_weights_data.size();
  std::vector<float> dnnl_wei_scales(count);
#pragma omp parallel for if (count > 50)
  for (size_t i = 0; i < count; i++) {
    dnnl_wei_scales[i] = 1.f / scale_weights_data[i];
  }
57
  std::vector<float> dnnl_psum_scales = {1.f};
58 59 60 61 62 63
  std::vector<float> dnnl_dst_scales = {1.f / scale_out};

  return std::make_tuple(
      dnnl_src_scales, dnnl_wei_scales, dnnl_psum_scales, dnnl_dst_scales);
}

M
Michał Gallus 已提交
64
template <typename T_in, typename T_w, typename T_out>
65
class FCMKLDNNHandler
66 67
    : public phi::funcs::OneDNNHandlerNoCachingT<T_in,
                                                 dnnl::inner_product_forward> {
M
mozga-intel 已提交
68
 public:
69
  FCMKLDNNHandler(const ExecutionContext& ctx,
70
                  const OneDNNContext& dev_ctx,
71 72 73
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* weights,
                  const phi::DenseTensor* bias,
74
                  phi::DenseTensor* out UNUSED,
75
                  const int in_num_col_dims,
76
                  dnnl::engine onednn_engine,
77
                  platform::Place cpu_place)
78
      : phi::funcs::OneDNNHandlerNoCachingT<T_in, dnnl::inner_product_forward>(
79
            onednn_engine, cpu_place),
80 81 82 83 84 85 86 87 88
        dev_ctx_(dev_ctx) {
    this->memory_key_ = ctx.InputName("W");

    auto x_vec_dims = phi::vectorize(x->dims());
    auto weights_vec_dims = phi::vectorize(weights->dims());

    int MB = 1;
    for (int i = 0; i < in_num_col_dims; ++i) {
      MB *= x_vec_dims[i];
89 90
    }

91 92 93
    int IC = 1;
    for (size_t i = in_num_col_dims; i < x_vec_dims.size(); ++i) {
      IC *= x_vec_dims[i];
94
    }
95

96
    int OC = weights_vec_dims[1];
M
mozga-intel 已提交
97

98
    dnnl::memory::desc bias_md;
99

100
    auto src_md = dnnl::memory::desc(
101
        {MB, IC}, OneDNNGetDataType<T_in>(), dnnl::memory::format_tag::any);
102
    auto weights_md = dnnl::memory::desc(
103
        {OC, IC}, OneDNNGetDataType<T_w>(), dnnl::memory::format_tag::any);
104
    auto dst_md = dnnl::memory::desc(
105
        {MB, OC}, OneDNNGetDataType<T_out>(), dnnl::memory::format_tag::any);
106 107
    if (bias) {
      bias_md = dnnl::memory::desc({bias->numel()},
108
                                   OneDNNGetDataType<float>(),
109 110
                                   dnnl::memory::format_tag::a);
    }
111

112
    const auto attrs = CreateFCAttrs(ctx);
A
Adam 已提交
113

114
    this->AcquireForwardPrimitiveDescriptor(attrs,
115
                                            dnnl::prop_kind::forward_inference,
116 117 118 119
                                            src_md,
                                            weights_md,
                                            bias_md,
                                            dst_md);
M
mozga-intel 已提交
120 121
  }

122
 private:
123 124 125
  dnnl::primitive_attr CreateFCAttrs(const ExecutionContext& ctx) {
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
126

127
    float activation_scale = 1.0f;
128
    if (phi::funcs::is_int8<T_w>()) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
      std::vector<float> src_scales, wei_scales, psum_scales, dst_scales;
      std::tie(src_scales, wei_scales, psum_scales, dst_scales) =
          GetDNNLScales(ctx);

      bool force_fp32_output = ctx.HasAttr("force_fp32_output") &&
                               ctx.Attr<bool>("force_fp32_output");

      attributes.set_scales_mask(DNNL_ARG_SRC, 0);

      dnnl::memory::desc src_scales_md(
          {1}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::x);
      src_scales_mem_ = dnnl::memory(src_scales_md, this->engine_);
      memcpy(src_scales_mem_.get_data_handle(),
             src_scales.data(),
             src_scales.size() * sizeof(float));

      int mask = wei_scales.size() > 1 ? 1 : 0;
      attributes.set_scales_mask(DNNL_ARG_WEIGHTS, mask);

      dnnl::memory::desc wei_scales_md(
          {static_cast<int64_t>(wei_scales.size())},
          dnnl::memory::data_type::f32,
          dnnl::memory::format_tag::x);
      wei_scales_mem_ = dnnl::memory(wei_scales_md, this->engine_);
      memcpy(wei_scales_mem_.get_data_handle(),
             wei_scales.data(),
             wei_scales.size() * sizeof(float));

      if (!force_fp32_output) {
        attributes.set_scales_mask(DNNL_ARG_DST, 0);

        dnnl::memory::desc dst_scales_md(
            {1}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::x);
        dst_scales_mem_ = dnnl::memory(dst_scales_md, this->engine_);
        memcpy(dst_scales_mem_.get_data_handle(),
               dst_scales.data(),
               dst_scales.size() * sizeof(float));
      }
167
    }
M
mozga-intel 已提交
168

169 170
    // ReLU from "fc_fuse_pass"
    if (ctx.Attr<std::string>("activation_type") == "relu") {
171
      post_operations.append_eltwise(dnnl::algorithm::eltwise_relu, 0.0f, 0.0f);
172
    }
173
    AppendActivation(ctx, post_operations, activation_scale);
174

175 176 177
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
178
          dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
179 180
    }

181 182
    attributes.set_post_ops(post_operations);
    return attributes;
183 184
  }

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  void AppendActivation(const ExecutionContext& ctx,
                        dnnl::post_ops& post_ops,  // NOLINT
                        float activation_scale = 1.0f) {
    const auto invalid_attribute =
        ctx.HasAttr("fuse_activation")
            ? ctx.Attr<std::string>("fuse_activation").empty()
            : true;
    if (invalid_attribute) return;

    const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
    const auto fuse_alpha =
        ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
    const auto fuse_beta =
        ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

200 201 202 203 204 205 206 207 208 209
    const auto activation_map = phi::funcs::OneDNNActivationMap();
    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        phi::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

210
    post_ops.append_eltwise(activation_type->second, fuse_alpha, fuse_beta);
211
    post_ops.append_eltwise(
212
        dnnl::algorithm::eltwise_linear, activation_scale, 0.0f);
M
Michał Gallus 已提交
213 214
  }

215 216
  // Computing oneDNN's scaling mask which determines along which dimension
  // slice should the scaling be applied.
M
Michał Gallus 已提交
217 218 219 220
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

221 222 223 224
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderAndAttrs(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
225 226
      const dnnl::primitive_attr& attrs,
      const std::vector<float>& scale_data) {
227
    std::shared_ptr<dnnl::memory> target_memory_p;
M
Michał Gallus 已提交
228

229 230 231 232 233
    auto user_memory_p =
        std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
    target_memory_p = std::make_shared<dnnl::memory>(target_md, this->engine_);
    auto reorder_p = std::make_shared<dnnl::reorder>(
        *user_memory_p, *target_memory_p, attrs);
M
Michał Gallus 已提交
234

235 236 237 238 239 240 241 242 243
    auto scales_md =
        dnnl::memory::desc({static_cast<int64_t>(scale_data.size())},
                           dnnl::memory::data_type::f32,
                           dnnl::memory::format_tag::x);
    auto scale_mem =
        dnnl::memory(scales_md,
                     this->engine_,
                     phi::funcs::to_void_cast<float>(scale_data.data()));

244
    auto& astream = OneDNNContext::tls().get_stream();
245
    {
246 247 248 249
      reorder_p->execute(astream,
                         {{DNNL_ARG_FROM, *user_memory_p},
                          {DNNL_ARG_TO, *target_memory_p},
                          {DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, scale_mem}});
250 251
      astream.wait();
    }
M
Michał Gallus 已提交
252

253 254
    return target_memory_p;
  }
255

256
  std::string memory_key_;
257
  const OneDNNContext& dev_ctx_;
258 259 260
  dnnl::memory src_scales_mem_;
  dnnl::memory wei_scales_mem_;
  dnnl::memory dst_scales_mem_;
M
Michał Gallus 已提交
261

262
 public:
263 264
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* x) {
265 266 267 268 269 270
    const T_in* x_data = x->data<T_in>();

    auto user_md = x->mem_desc();
    if (x->dims().size() != 2) {
      // reshape restrictions are always satisfied because in case of 3 or 4 dim
      // input, plain layout is enforced
271
      user_md = user_md.reshape(this->fwd_pd_->src_desc().get_dims());
M
Michał Gallus 已提交
272 273
    }

274 275
    return this->AcquireMemoryWithReorder(
        user_md, this->fwd_pd_->src_desc(), to_void_cast<T_in>(x_data));
276
  }
M
mozga-intel 已提交
277

278
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
279
      const ExecutionContext& ctx, const phi::DenseTensor* bias) {
280
    const float* bias_data = bias->data<float>();
281 282
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->bias_desc(),
                                            to_void_cast<float>(bias_data));
283 284 285
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
286
      const phi::DenseTensor* weights, const std::vector<float>& scale_data) {
287 288 289 290 291 292 293
    const std::string weights_base_key = this->memory_key_ + "@weights";
    std::string weights_key;
    weights_key.reserve(128);
    weights_key = phi::funcs::ExtendKeyWithThreadInfoIfNeeded(
        dev_ctx_,
        phi::funcs::CreateKey(
            dev_ctx_, weights_base_key, this->fwd_pd_->weights_desc()));
294 295
    auto memory_p = std::static_pointer_cast<dnnl::memory>(
        this->dev_ctx_.GetBlob(weights_key));
M
mozga-intel 已提交
296

297 298
    if (!memory_p) {
      const float* weights_data = weights->data<float>();
299
      auto weights_dims = this->fwd_pd_->weights_desc().get_dims();
300 301

      auto user_md = dnnl::memory::desc(weights_dims,
302
                                        OneDNNGetDataType<float>(),
303 304
                                        dnnl::memory::format_tag::io);

305
      if (phi::funcs::is_int8<T_w>()) {
306 307
        dnnl::primitive_attr attrs;
        int mask = CreateMask(0, scale_data.size() > 1);
308
        attrs.set_scales_mask(DNNL_ARG_SRC, mask);
309 310 311 312 313

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->weights_desc(),
            to_void_cast<float>(weights_data),
314 315
            attrs,
            scale_data);
316 317 318 319 320 321 322 323 324 325
      } else {
        memory_p =
            this->AcquireMemoryWithReorder(user_md,
                                           this->fwd_pd_->weights_desc(),
                                           to_void_cast<float>(weights_data));
      }

      this->dev_ctx_.SetBlob(weights_key, memory_p);
    }
    return memory_p;
326
  }
M
mozga-intel 已提交
327

328
  std::shared_ptr<dnnl::memory> AcquireCustomDstMemory(
329
      const ExecutionContext& ctx, phi::DenseTensor* out) {
330
    return this->template AcquireDstMemory<T_out>(out);
331
  }  // namespace operators
332 333 334 335 336 337 338 339 340 341 342 343

  void SetScalesIfNeeded(std::unordered_map<int, dnnl::memory>* args) {
    if (src_scales_mem_.get_desc().is_zero() != true) {
      args->insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, src_scales_mem_});
      args->insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, wei_scales_mem_});
    }
    // dst scales may be empty when force fp32 output
    if (dst_scales_mem_.get(true)) {
      args->insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, dst_scales_mem_});
    }
  }
};  // namespace paddle
344

345 346 347 348 349 350 351 352 353 354
#define IF_CHANGE_FC_TW_TYPENAME(condition, ...) \
  if (condition) {                               \
    using T_w = int8_t;                          \
    __VA_ARGS__();                               \
  } else {                                       \
    using T_w = T_in;                            \
    __VA_ARGS__();                               \
  }

template <typename T_in>
355 356
class FCMKLDNNKernel : public framework::OpKernel<T_in> {
 public:
357
  void Compute(const ExecutionContext& ctx) const override {
358 359
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
360

361 362 363
    IF_CHANGE_FC_TW_TYPENAME((std::is_same<T_in, uint8_t>::value), ([&] {
                               if (force_fp32_output) {
                                 this->RunKernel<float, T_w>(ctx);
364
                               } else if (phi::funcs::is_int8<T_in>()) {
365 366 367 368 369 370 371 372 373
                                 if (fuse_relu) {
                                   this->RunKernel<uint8_t, T_w>(ctx);
                                 } else {
                                   this->RunKernel<int8_t, T_w>(ctx);
                                 }
                               } else {
                                 this->RunKernel<T_in, T_w>(ctx);
                               }
                             }));
374 375
  }

376 377
  void PrepareSrcMem(const std::shared_ptr<dnnl::inner_product_forward>& fc_p
                         UNUSED,
378
                     const std::shared_ptr<dnnl::memory>& src_mem,
379
                     const phi::DenseTensor* x,
380
                     const dnnl::engine& engine) const {
381
    auto x_md = x->mem_desc().reshape(src_mem->get_desc().get_dims());
382 383 384 385
    if (x_md != src_mem->get_desc()) {
      dnnl::memory x_mem(x_md, engine, to_void_cast<T_in>(x->data<T_in>()));
      auto reorder_p = dnnl::reorder(x_mem, *src_mem);

386
      auto& astream = OneDNNContext::tls().get_stream();
387 388 389 390 391 392 393
      reorder_p.execute(astream, x_mem, *src_mem);
      astream.wait();
    } else {
      src_mem->set_data_handle(to_void_cast<T_in>(x->data<T_in>()));
    }
  }

394
  template <typename T_out, typename T_w>
395
  void RunKernel(const ExecutionContext& ctx) const {
396
    const auto& dev_ctx = ctx.template device_context<OneDNNContext>();
397
    const auto& onednn_engine = dev_ctx.GetEngine();
398

399
    const auto* x = ctx.Input<phi::DenseTensor>("Input");
400 401
    const auto* weights = ctx.Input<phi::DenseTensor>("W");
    const auto* bias = ctx.Input<phi::DenseTensor>("Bias");
402
    auto out = ctx.Output<phi::DenseTensor>("Out");
403 404 405

    const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

406 407 408 409 410 411 412 413
    std::shared_ptr<dnnl::inner_product_forward> fc_p;
    std::shared_ptr<dnnl::memory> src_memory_p;
    std::shared_ptr<dnnl::memory> weights_memory_p;
    std::shared_ptr<dnnl::memory> bias_memory_p;
    std::shared_ptr<dnnl::memory> dst_memory_p;

    std::string cache_key;
    cache_key.reserve(64);
414
    cache_key = phi::funcs::ExtendKeyWithThreadInfoIfNeeded(
415
        dev_ctx,
416 417 418
        phi::funcs::CreateKey(dev_ctx,
                              ctx.InputName("Input"),
                              ctx.InputName("W"),
419 420
                              phi::vectorize(x->dims()),
                              phi::vectorize(weights->dims())));
421 422 423 424

    auto inner_product_cache =
        std::static_pointer_cast<InnerProductCache>(dev_ctx.GetBlob(cache_key));

425 426
    RecomputeOutputDims(ctx, x, weights, out);

427 428
    std::unordered_map<int, dnnl::memory> fc_args;

429 430 431 432 433
    if (inner_product_cache) {
      fc_p = std::make_shared<dnnl::inner_product_forward>(
          inner_product_cache->inner_product_p);
      src_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->src_mem);
434
      PrepareSrcMem(fc_p, src_memory_p, x, onednn_engine);
435 436 437 438 439 440

      weights_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->weights_mem);

      dst_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->dst_mem);
441

442 443 444 445
      auto out_ptr = out->mutable_data<T_out>(
          ctx.GetPlace(), dst_memory_p->get_desc().get_size());
      dst_memory_p->set_data_handle(out_ptr);

446 447 448 449
      fc_args.insert({DNNL_ARG_SRC, *src_memory_p});
      fc_args.insert({DNNL_ARG_WEIGHTS, *weights_memory_p});
      fc_args.insert({DNNL_ARG_DST, *dst_memory_p});

450 451 452
      if (bias) {
        bias_memory_p =
            std::make_shared<dnnl::memory>(inner_product_cache->bias_mem);
453 454 455 456 457 458 459 460 461 462 463 464
        fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p});
      }

      if (inner_product_cache->src_scales_mem.get(true)) {
        fc_args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC,
                        inner_product_cache->src_scales_mem});
        fc_args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS,
                        inner_product_cache->wei_scales_mem});
      }
      if (inner_product_cache->dst_scales_mem.get(true)) {
        fc_args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST,
                        inner_product_cache->dst_scales_mem});
465 466 467 468 469 470 471 472 473 474 475
      }
    } else {
      auto in_col_dims = ctx.Attr<int>("in_num_col_dims");

      FCMKLDNNHandler<T_in, T_w, T_out> handler(ctx,
                                                dev_ctx,
                                                x,
                                                weights,
                                                bias,
                                                out,
                                                in_col_dims,
476
                                                onednn_engine,
477 478 479 480 481 482
                                                ctx.GetPlace());

      src_memory_p = handler.AcquireSrcMemoryWithReorder(x);
      weights_memory_p =
          handler.AcquireWeightsMemoryWithReorder(weights, scale_weights);
      dst_memory_p = handler.AcquireCustomDstMemory(ctx, out);
483 484 485
      fc_args.insert({DNNL_ARG_SRC, *src_memory_p});
      fc_args.insert({DNNL_ARG_WEIGHTS, *weights_memory_p});
      fc_args.insert({DNNL_ARG_DST, *dst_memory_p});
486 487

      if (bias) {
488
        bias_memory_p = handler.AcquireBiasMemoryWithReorder(ctx, bias);
489 490 491 492 493
        fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p});
      }

      if (phi::funcs::is_int8<T_in>()) {
        handler.SetScalesIfNeeded(&fc_args);
494 495 496 497 498
      }

      fc_p = handler.AcquireForwardPrimitive();
    }

499
    auto& astream = OneDNNContext::tls().get_stream();
500 501 502
    fc_p->execute(astream, fc_args);
    astream.wait();

503 504 505 506 507 508 509 510 511
    if (!inner_product_cache) {
      auto ip_cache = std::make_shared<InnerProductCache>();
      ip_cache->inner_product_p = *fc_p;
      ip_cache->src_mem = *src_memory_p;
      ip_cache->weights_mem = *weights_memory_p;
      ip_cache->dst_mem = *dst_memory_p;
      if (bias) {
        ip_cache->bias_mem = *bias_memory_p;
      }
512 513 514 515 516 517 518 519 520 521 522 523
      if (fc_args.count(DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC)) {
        ip_cache->src_scales_mem =
            fc_args.at(DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC);
        ip_cache->wei_scales_mem =
            fc_args.at(DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS);
      }

      if (fc_args.count(DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST)) {
        ip_cache->dst_scales_mem =
            fc_args.at(DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST);
      }

524 525 526
      dev_ctx.SetBlob(cache_key, ip_cache);
    }

527 528 529 530 531 532 533 534 535
    const auto out_md =
        dst_memory_p->get_desc().reshape(phi::vectorize(out->dims()));

    if (ctx.HasAttr("fused_reshape2_shape")) {
      phi::funcs::SetOutMemDescWithReshape2FuseSupport(
          ctx.Attr<std::vector<int>>("fused_reshape2_shape"), out, out_md);
    } else {
      out->set_mem_desc(out_md);
    }
536
  }
M
mozga-intel 已提交
537

538
  void RecomputeOutputDims(const ExecutionContext& ctx,
539
                           const phi::DenseTensor* x,
540
                           const phi::DenseTensor* weights,
541
                           phi::DenseTensor* out) const {
L
luotao1 已提交
542
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
543
    bool padding_weights = ctx.Attr<bool>("padding_weights");
544 545
    PADDLE_ENFORCE_EQ(padding_weights,
                      false,
546 547
                      phi::errors::PermissionDenied(
                          "Weight padding in fc can not be used in oneDNN."));
L
luotao1 已提交
548
    std::vector<int64_t> output_dims;
549 550
    FCOutputSize(x->dims(),
                 weights->dims(),
551 552
                 output_dims,
                 in_num_col_dims,
553
                 padding_weights);
554 555
    out->Resize(phi::make_ddim(output_dims));
    out->set_lod(x->lod());
556 557
  }
};
M
mozga-intel 已提交
558 559 560 561

}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
562 563 564 565
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
566 567 568

REGISTER_OP_KERNEL(fc,
                   MKLDNN,
569
                   ::phi::CPUPlace,
570 571 572 573
                   ops::FCMKLDNNKernel<float>,
                   ops::FCMKLDNNKernel<paddle::platform::bfloat16>,
                   ops::FCMKLDNNKernel<uint8_t>,
                   ops::FCMKLDNNKernel<int8_t>);