auto_parallel_gpt_model.py 36.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import collections
import random
import numpy as np

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.tensor as tensor
import paddle.distributed.auto_parallel as auto
from paddle import fluid
from paddle.fluid import layers
from paddle.distributed import fleet
from paddle.nn.layer.transformer import _convert_param_attr_to_list
from paddle.fluid.initializer import Normal, NumpyArrayInitializer

paddle.enable_static()


def init_global():
    global _global_parallel_strategy
37
    _global_parallel_strategy = None
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    global _global_process_mesh
    global PP_MESH_LIST
    global DPPP_MESH_LIST
    global MPPP_MESH_LIST
    global DPMPPP_MESH_LIST


class MultiHeadAttention(nn.Layer):
    """
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.
    """
    Cache = collections.namedtuple("Cache", ["k", "v"])
    StaticCache = collections.namedtuple("StaticCache", ["k", "v"])

    def __init__(self,
                 embed_dim,
                 num_heads,
                 dropout=0.,
                 kdim=None,
                 vdim=None,
                 need_weights=False,
                 weight_attr=None,
                 bias_attr=None,
                 fuse=False,
                 mesh_idx=None):
        super(MultiHeadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.need_weights = need_weights
        self.fuse = fuse
        self.mesh_idx = mesh_idx
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        if self.fuse:
            assert self.kdim == embed_dim
            assert self.vdim == embed_dim
79 80 81 82
            self.qkv_proj = nn.Linear(embed_dim,
                                      3 * embed_dim,
                                      weight_attr,
                                      bias_attr=bias_attr)
83
        else:
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            self.q_proj = nn.Linear(embed_dim,
                                    embed_dim,
                                    weight_attr=weight_attr,
                                    bias_attr=bias_attr)
            self.k_proj = nn.Linear(self.kdim,
                                    embed_dim,
                                    weight_attr=weight_attr,
                                    bias_attr=bias_attr)
            self.v_proj = nn.Linear(self.vdim,
                                    embed_dim,
                                    weight_attr=weight_attr,
                                    bias_attr=bias_attr)
        self.out_proj = nn.Linear(embed_dim,
                                  embed_dim,
                                  weight_attr=weight_attr,
                                  bias_attr=bias_attr)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    def _fuse_prepare_qkv(self, query):
        mix_layer = self.qkv_proj(query)
        mix_layer = paddle.reshape_(mix_layer,
                                    [0, 0, self.num_heads, 3 * self.head_dim])
        mix_layer = paddle.transpose(mix_layer, [0, 2, 1, 3])
        q, k, v = paddle.split(mix_layer, num_or_sections=3, axis=-1)
        return q, k, v

    def _prepare_qkv(self, query, key, value, use_cache=False, cache=None):
        """
        Prapares linear projected queries, keys and values for usage of subsequnt
        multiple parallel attention. If `cache` is not None, using cached results
        to reduce redundant calculations.
        """
        q = self.q_proj(query)
        if _global_parallel_strategy == "mp":
117 118
            auto.shard_tensor(self.q_proj.weight, _global_process_mesh,
                              [None, "x"])
119
        elif _global_parallel_strategy == "dp_mp":
120 121
            auto.shard_tensor(self.q_proj.weight, _global_process_mesh,
                              [None, "y"])
122
        elif _global_parallel_strategy == "mp_pp":
123 124
            auto.shard_tensor(self.q_proj.weight, MPPP_MESH_LIST[self.mesh_idx],
                              [None, "x"])
125
        elif _global_parallel_strategy == "dp_mp_pp":
126
            auto.shard_tensor(self.q_proj.weight,
127 128
                              DPMPPP_MESH_LIST[self.mesh_idx], [None, "y"])

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])
        if isinstance(cache, self.StaticCache):
            # for encoder-decoder attention in inference and has cached
            k, v = cache.k, cache.v
        else:
            k, v = self.compute_kv(key, value)
        if isinstance(cache, self.Cache):
            # for decoder self-attention in inference
            k = tensor.concat([cache.k, k], axis=2)
            v = tensor.concat([cache.v, v], axis=2)
        if use_cache is True:
            cache = self.Cache(k, v)
        return (q, k, v) if use_cache is False else (q, k, v, cache)

    def compute_kv(self, key, value):
        """
        Applies linear projection on input keys and values, then splits heads
        (reshape and transpose) to get keys and values from different representation
        subspaces. The results are used as key-values pairs for subsequent multiple
        parallel attention.
        It is part of calculations in multi-head attention, and is provided as
        a method to pre-compute and prefetch these results, thus we can use them
        to construct cache for inference.
        """
        k = self.k_proj(key)
        if _global_parallel_strategy == "mp":
156 157
            auto.shard_tensor(self.k_proj.weight, _global_process_mesh,
                              [None, "x"])
158
        elif _global_parallel_strategy == "dp_mp":
159 160
            auto.shard_tensor(self.k_proj.weight, _global_process_mesh,
                              [None, "y"])
161
        elif _global_parallel_strategy == "mp_pp":
162 163
            auto.shard_tensor(self.k_proj.weight, MPPP_MESH_LIST[self.mesh_idx],
                              [None, "x"])
164
        elif _global_parallel_strategy == "dp_mp_pp":
165
            auto.shard_tensor(self.k_proj.weight,
166
                              DPMPPP_MESH_LIST[self.mesh_idx], [None, "y"])
167 168
        v = self.v_proj(value)
        if _global_parallel_strategy == "mp":
169 170
            auto.shard_tensor(self.v_proj.weight, _global_process_mesh,
                              [None, "x"])
171
        elif _global_parallel_strategy == "dp_mp":
172 173
            auto.shard_tensor(self.v_proj.weight, _global_process_mesh,
                              [None, "y"])
174
        elif _global_parallel_strategy == "mp_pp":
175 176
            auto.shard_tensor(self.v_proj.weight, MPPP_MESH_LIST[self.mesh_idx],
                              [None, "x"])
177
        elif _global_parallel_strategy == "dp_mp_pp":
178
            auto.shard_tensor(self.v_proj.weight,
179
                              DPMPPP_MESH_LIST[self.mesh_idx], [None, "y"])
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])
        return k, v

    def gen_cache(self, key, value=None, type=Cache):
        """
        Generates cache for `forward` usage in inference accroding to arguments.
        The generated cache is an instance of `MultiHeadAttention.Cache` or an
        instance of `MultiHeadAttention.StaticCache`.
        """
        if type == MultiHeadAttention.StaticCache:  # static_kv
            k, v = self.compute_kv(key, value)
            return self.StaticCache(k, v)
        elif value is None:  # incremental_state
            k = layers.fill_constant_batch_size_like(
                input=key,
                shape=[-1, self.num_heads, 0, self.head_dim],
                dtype=key.dtype,
                value=0)
            v = layers.fill_constant_batch_size_like(
                input=key,
                shape=[-1, self.num_heads, 0, self.head_dim],
                dtype=key.dtype,
                value=0)
            return self.Cache(k, v)
        else:
            # incremental_state with initial value, mainly for usage like UniLM
            return self.Cache(key, value)

    def forward(self,
                query,
                key,
                value,
                attn_mask=None,
                use_cache=False,
                cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
        """
        key = query if key is None else key
        value = query if value is None else value
        # compute q ,k ,v
        if use_cache is False:
            if self.fuse:
                q, k, v = self._fuse_prepare_qkv(query)
            else:
                q, k, v = self._prepare_qkv(query, key, value, use_cache, cache)
        else:
            q, k, v, cache = self._prepare_qkv(query, key, value, use_cache,
                                               cache)
233 234 235 236
        product = layers.matmul(x=q,
                                y=k,
                                transpose_y=True,
                                alpha=self.head_dim**-0.5)
237 238 239 240
        if attn_mask is not None:
            product = product + attn_mask
        weights = F.softmax(product)
        if self.dropout:
241 242 243 244
            weights = F.dropout(weights,
                                self.dropout,
                                training=self.training,
                                mode="upscale_in_train")
245 246 247 248 249 250 251
        out = tensor.matmul(weights, v)
        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
        # project to output
        out = self.out_proj(out)
        if _global_parallel_strategy == "mp":
252 253
            auto.shard_tensor(self.out_proj.weight, _global_process_mesh,
                              ["x", None])
254
        elif _global_parallel_strategy == "dp_mp":
255 256
            auto.shard_tensor(self.out_proj.weight, _global_process_mesh,
                              ["y", None])
257
        elif _global_parallel_strategy == "mp_pp":
258
            auto.shard_tensor(self.out_proj.weight,
259
                              MPPP_MESH_LIST[self.mesh_idx], ["x", None])
260
        elif _global_parallel_strategy == "dp_mp_pp":
261
            auto.shard_tensor(self.out_proj.weight,
262 263
                              DPMPPP_MESH_LIST[self.mesh_idx], ["y", None])

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        outs = [out]
        if self.need_weights:
            outs.append(weights)
        if use_cache:
            outs.append(cache)
        return out if len(outs) == 1 else tuple(outs)


class TransformerDecoder(nn.Layer):
    """
    TransformerDecoder is a stack of N decoder layers.
    """

    def __init__(self, decoder_layers, num_layers, norm=None, hidden_size=None):
        super(TransformerDecoder, self).__init__()

        self.num_layers = num_layers
        self.layers = decoder_layers
        self.norm = norm
        if norm is "LayerNorm":
            self.norm = nn.LayerNorm(hidden_size)
        elif norm is not None:
            raise ValueError("Only support LayerNorm")
        self.checkpoints = []

    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                use_cache=False,
                cache=None):
        """
        Applies a stack of N Transformer decoder layers on inputs. If `norm` is
        provided, also applies layer normalization on the output of last decoder
        layer.
        """
        output = tgt
        new_caches = []
        self.checkpoints = []
        if _global_parallel_strategy == "pp":
305 306
            auto.shard_tensor(output, PP_MESH_LIST[0],
                              [None for i in range(len(output.shape))])
307
        if _global_parallel_strategy == "dp_pp":
308 309
            auto.shard_tensor(output, DPPP_MESH_LIST[0], ["x"].extends(
                [None for i in range(len(output.shape) - 1)]))
310
        if _global_parallel_strategy == "mp_pp":
311 312
            auto.shard_tensor(output, MPPP_MESH_LIST[0],
                              [None for i in range(len(output.shape))])
313
        if _global_parallel_strategy == "dp_mp_pp":
314 315
            auto.shard_tensor(output, DPMPPP_MESH_LIST[0], ["x"].extends(
                [None for i in range(len(output.shape) - 1)]))
316 317 318 319 320
        for i, mod in enumerate(self.layers):
            if cache is None:
                if use_cache:
                    if _global_parallel_strategy == "pp":
                        output, new_cache = auto.shard_op(
321 322 323
                            mod, PP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                             tgt_mask,
                                                             use_cache, cache)
324
                        auto.shard_tensor(
325 326
                            output, PP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
327 328
                    elif _global_parallel_strategy == "dp_pp":
                        output, new_cache = auto.shard_op(
329 330 331
                            mod, DPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                               tgt_mask,
                                                               use_cache, cache)
332
                        auto.shard_tensor(
333 334
                            output, DPPP_MESH_LIST[mod.mesh_idx], ["x"].extends(
                                [None for i in range(len(output.shape) - 1)]))
335 336
                    elif _global_parallel_strategy == "mp_pp":
                        output, new_cache = auto.shard_op(
337 338 339
                            mod, MPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                               tgt_mask,
                                                               use_cache, cache)
340
                        auto.shard_tensor(
341 342
                            output, MPPP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
343 344 345
                    elif _global_parallel_strategy == "dp_mp_pp":
                        output, new_cache = auto.shard_op(
                            mod,
346 347 348
                            DPMPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                            tgt_mask, use_cache,
                                                            cache)
349
                        auto.shard_tensor(
350 351
                            output, DPMPPP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
352 353 354 355 356 357 358 359 360
                    else:
                        output, new_cache = mod(output,
                                                memory,
                                                tgt_mask=tgt_mask,
                                                use_cache=use_cache,
                                                cache=cache)
                    new_caches.append(new_cache)
                else:
                    if _global_parallel_strategy == "pp":
361 362
                        output = auto.shard_op(mod, PP_MESH_LIST[mod.mesh_idx])(
                            output, memory, tgt_mask, use_cache, cache)
363
                        auto.shard_tensor(
364 365
                            output, PP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
366
                    elif _global_parallel_strategy == "dp_pp":
367 368 369 370
                        output = auto.shard_op(
                            mod, DPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                               tgt_mask,
                                                               use_cache, cache)
371
                        auto.shard_tensor(
372 373
                            output, DPPP_MESH_LIST[mod.mesh_idx], ["x"].extends(
                                [None for i in range(len(output.shape) - 1)]))
374
                    elif _global_parallel_strategy == "mp_pp":
375 376 377 378
                        output = auto.shard_op(
                            mod, MPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                               tgt_mask,
                                                               use_cache, cache)
379
                        auto.shard_tensor(
380 381
                            output, MPPP_MESH_LIST[mod.mesh_idx],
                            [None for i in range(len(output.shape))])
382
                    elif _global_parallel_strategy == "dp_mp_pp":
383 384 385 386
                        output = auto.shard_op(mod,
                                               DPMPPP_MESH_LIST[mod.mesh_idx])(
                                                   output, memory, tgt_mask,
                                                   use_cache, cache)
387
                        auto.shard_tensor(
388 389 390
                            output, DPMPPP_MESH_LIST[mod.mesh_idx],
                            ["x"].extends(
                                [None for i in range(len(output.shape) - 1)]))
391 392 393 394 395 396 397 398 399 400
                    else:
                        output = mod(output,
                                     memory,
                                     tgt_mask=tgt_mask,
                                     use_cache=use_cache,
                                     cache=cache)
            else:
                if _global_parallel_strategy == "pp":
                    output, new_cache = auto.shard_op(
                        mod,
401 402 403 404
                        PP_MESH_LIST[mod.mesh_idx])(output, memory, tgt_mask,
                                                    use_cache, cache)
                    auto.shard_tensor(output, PP_MESH_LIST[mod.mesh_idx],
                                      [None for i in range(len(output.shape))])
405 406 407
                elif _global_parallel_strategy == "dp_pp":
                    output, new_cache = auto.shard_op(
                        mod,
408 409 410 411 412
                        DPPP_MESH_LIST[mod.mesh_idx])(output, memory, tgt_mask,
                                                      use_cache, cache)
                    auto.shard_tensor(output, DPPP_MESH_LIST[mod.mesh_idx], [
                        "x"
                    ].extends([None for i in range(len(output.shape) - 1)]))
413 414 415
                elif _global_parallel_strategy == "mp_pp":
                    output, new_cache = auto.shard_op(
                        mod,
416 417 418 419
                        MPPP_MESH_LIST[mod.mesh_idx])(output, memory, tgt_mask,
                                                      use_cache, cache)
                    auto.shard_tensor(output, MPPP_MESH_LIST[mod.mesh_idx],
                                      [None for i in range(len(output.shape))])
420 421
                elif _global_parallel_strategy == "dp_mp_pp":
                    output, new_cache = auto.shard_op(
422 423 424 425 426 427
                        mod, DPMPPP_MESH_LIST[mod.mesh_idx])(output, memory,
                                                             tgt_mask,
                                                             use_cache, cache)
                    auto.shard_tensor(output, DPMPPP_MESH_LIST[mod.mesh_idx], [
                        "x"
                    ].extends([None for i in range(len(output.shape) - 1)]))
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
                else:
                    output, new_cache = mod(output,
                                            memory,
                                            tgt_mask=tgt_mask,
                                            use_cache=use_cache,
                                            cache=cache[i])
                new_caches.append(new_cache)
            self.checkpoints.append(output.name)
        if self.norm is not None:
            output = self.norm(output)
        return output if use_cache is False else (output, new_caches)

    def gen_cache(self, memory, do_zip=False):
        """
        Generates cache for `forward` usage. The generated cache is a list, and
        each element in it is a tuple( :code:`(incremental_cache, static_cache)` )
        produced by `TransformerDecoderLayer.gen_cache`. See `TransformerDecoderLayer.gen_cache`
        for more details. If `do_zip` is True, apply `zip` on these tuples to get
        a list with two elements.
       """
        cache = [layer.gen_cache(memory) for layer in self.layers]
        if do_zip:
            cache = list(zip(*cache))
        return cache


class TransformerDecoderLayer(nn.Layer):
    """
    The transformer decoder layer.
    It contains multiheadattention and some linear layers.
    """

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
                 dropout=0.1,
                 activation="gelu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=True,
                 weight_attr=None,
                 bias_attr=None,
                 mesh_idx=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3
        self.mesh_idx = mesh_idx
        super(TransformerDecoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before
        weight_attrs = _convert_param_attr_to_list(weight_attr, 3)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 3)
482 483 484 485 486 487 488 489 490 491 492 493 494 495
        self.self_attn = MultiHeadAttention(d_model,
                                            nhead,
                                            dropout=attn_dropout,
                                            weight_attr=weight_attrs[0],
                                            bias_attr=bias_attrs[0],
                                            mesh_idx=self.mesh_idx)
        self.linear1 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attrs[2],
                                 bias_attr=bias_attrs[2])
        self.linear2 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attrs[2],
                                 bias_attr=bias_attrs[2])
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        self.norm1 = nn.LayerNorm(d_model, epsilon=1e-5)
        self.norm2 = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(act_dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)

    def forward(self, tgt, memory, tgt_mask=None, use_cache=False, cache=None):
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        if use_cache is False:
            tgt = self.self_attn(tgt, tgt, tgt, tgt_mask, use_cache, cache)
        else:
            tgt, incremental_cache = self.self_attn(tgt, tgt, tgt, tgt_mask,
                                                    use_cache, cache)
        tgt = residual + self.dropout1(tgt)
        if not self.normalize_before:
            tgt = self.norm1(tgt)
        residual = tgt
        if self.normalize_before:
            tgt = self.norm2(tgt)
        if _global_parallel_strategy == "mp":
518 519
            auto.shard_tensor(self.linear1.weight, _global_process_mesh,
                              [None, "x"])
520
        elif _global_parallel_strategy == "dp_mp":
521 522
            auto.shard_tensor(self.linear1.weight, _global_process_mesh,
                              [None, "y"])
523
        elif _global_parallel_strategy == "mp_pp":
524
            auto.shard_tensor(self.linear1.weight,
525
                              MPPP_MESH_LIST[self.mesh_idx], [None, "x"])
526
        if _global_parallel_strategy == "dp_mp_pp":
527
            auto.shard_tensor(self.linear1.weight,
528 529
                              DPMPPP_MESH_LIST[self.mesh_idx], [None, "y"])

530
        if _global_parallel_strategy == "mp":
531 532
            auto.shard_tensor(self.linear2.weight, _global_process_mesh,
                              ["x", None])
533
        elif _global_parallel_strategy == "dp_mp":
534 535
            auto.shard_tensor(self.linear2.weight, _global_process_mesh,
                              ["y", None])
536
        elif _global_parallel_strategy == "mp_pp":
537
            auto.shard_tensor(self.linear2.weight,
538
                              MPPP_MESH_LIST[self.mesh_idx], ["x", None])
539
        elif _global_parallel_strategy == "dp_mp_pp":
540
            auto.shard_tensor(self.linear2.weight,
541
                              DPMPPP_MESH_LIST[self.mesh_idx], ["y", None])
542
        tgt = self.dropout2(
543
            self.linear2(F.gelu(self.linear1(tgt), approximate=True)))
544 545 546 547 548 549
        tgt = residual + tgt
        if not self.normalize_before:
            tgt = self.norm2(tgt)
        return tgt if use_cache is False else (tgt, incremental_cache)

    def gen_cache(self, memory):
550 551
        incremental_cache = self.self_attn.gen_cache(memory,
                                                     type=self.self_attn.Cache)
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
        return incremental_cache


class GPTEmbeddings(nn.Layer):
    """
    Include embeddings from word, position and token_type embeddings
    """

    def __init__(self,
                 vocab_size,
                 hidden_size=768,
                 hidden_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02):
        super(GPTEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size,
            hidden_size,
571 572 573
            weight_attr=paddle.ParamAttr(name="word_embeddings",
                                         initializer=nn.initializer.Normal(
                                             mean=0.0, std=initializer_range)))
574 575 576
        self.position_embeddings = nn.Embedding(
            max_position_embeddings,
            hidden_size,
577 578 579
            weight_attr=paddle.ParamAttr(name="pos_embeddings",
                                         initializer=nn.initializer.Normal(
                                             mean=0.0, std=initializer_range)))
580 581 582 583 584 585 586 587 588
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, input_ids, position_ids=None):
        if position_ids is None:
            ones = paddle.ones_like(input_ids, dtype="int64")
            seq_length = paddle.cumsum(ones, axis=-1)
            position_ids = seq_length - ones
        input_embedings = self.word_embeddings(input_ids)
        if _global_parallel_strategy == "mp":
589 590
            auto.shard_tensor(self.word_embeddings.weight, _global_process_mesh,
                              ["x", None])
591
        elif _global_parallel_strategy == "dp_mp":
592 593
            auto.shard_tensor(self.word_embeddings.weight, _global_process_mesh,
                              ["y", None])
594
        elif _global_parallel_strategy == "mp_pp":
595 596
            auto.shard_tensor(self.word_embeddings.weight, MPPP_MESH_LIST[0],
                              ["x", None])
597
        elif _global_parallel_strategy == "dp_mp_pp":
598 599 600
            auto.shard_tensor(self.word_embeddings.weight, DPMPPP_MESH_LIST[0],
                              ["y", None])

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = input_embedings + position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings


class GPTModel(nn.Layer):
    """
    The base model of gpt.
    """

    def __init__(self,
                 vocab_size=50304,
                 hidden_size=1024,
                 num_hidden_layers=24,
                 num_attention_heads=16,
                 intermediate_size=4096,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.,
                 attention_probs_dropout_prob=0.,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02,
                 pad_token_id=0,
                 eos_token_id=7,
                 bos_token_id=0,
                 eol_token_id=3,
                 pp_degree=None):
        super(GPTModel, self).__init__()
        self.pad_token_id = pad_token_id
        self.initializer_range = initializer_range
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.layer_per_stage = None
        self.pipline_mode = (pp_degree is not None and pp_degree > 1)
        if self.pipline_mode:
            self.layer_per_stage = num_hidden_layers // pp_degree
638 639 640 641
        self.embeddings = GPTEmbeddings(vocab_size, hidden_size,
                                        hidden_dropout_prob,
                                        max_position_embeddings,
                                        type_vocab_size, self.initializer_range)
642 643 644 645 646 647 648
        decoder_layers = nn.LayerList()
        for i in range(num_hidden_layers):
            mesh_index = None
            DecoderLayer = TransformerDecoderLayer
            if self.layer_per_stage is not None:
                mesh_index = i // self.layer_per_stage
            decoder_layers.append(
649 650 651 652 653 654 655 656 657 658 659 660
                DecoderLayer(d_model=hidden_size,
                             nhead=num_attention_heads,
                             dim_feedforward=intermediate_size,
                             dropout=hidden_dropout_prob,
                             activation=hidden_act,
                             attn_dropout=attention_probs_dropout_prob,
                             act_dropout=hidden_dropout_prob,
                             weight_attr=paddle.ParamAttr(
                                 initializer=nn.initializer.Normal(
                                     mean=0.0, std=self.initializer_range)),
                             bias_attr=None,
                             mesh_idx=mesh_index))
661
        Decoder = TransformerDecoder
662 663 664 665
        self.decoder = Decoder(decoder_layers,
                               num_hidden_layers,
                               norm="LayerNorm",
                               hidden_size=hidden_size)
666 667 668 669 670 671 672 673 674 675 676 677 678
        self.checkpoints = []

    def forward(self,
                input_ids,
                position_ids=None,
                attention_mask=None,
                use_cache=False,
                cache=None):
        self.checkpoints = []
        if position_ids is None:
            past_length = 0
            if cache is not None:
                past_length = paddle.shape(cache[0].k)[-2]
679 680 681 682
            position_ids = paddle.arange(past_length,
                                         paddle.shape(input_ids)[-1] +
                                         past_length,
                                         dtype='int64')
683
            position_ids = position_ids.unsqueeze(0)
684 685 686 687
            position_ids = paddle.fluid.layers.expand_as(
                position_ids, input_ids)
        embedding_output = self.embeddings(input_ids=input_ids,
                                           position_ids=position_ids)
688
        if _global_parallel_strategy == "pp":
689 690
            auto.shard_tensor(input_ids, PP_MESH_LIST[0],
                              [None for i in range(len(input_ids.shape))])
691
        if _global_parallel_strategy == "dp_pp":
692 693
            auto.shard_tensor(input_ids, DPPP_MESH_LIST[0], ["x"].extends(
                [None for i in range(len(input_ids.shape) - 1)]))
694
        if _global_parallel_strategy == "dp_mp_pp":
695 696
            auto.shard_tensor(input_ids, DPMPPP_MESH_LIST[0], ["x"].extends(
                [None for i in range(len(input_ids.shape) - 1)]))
697 698 699 700 701
        encoder_outputs = self.decoder(embedding_output,
                                       memory=None,
                                       tgt_mask=attention_mask,
                                       use_cache=use_cache,
                                       cache=cache)
702 703 704 705 706 707 708 709 710 711 712
        self.checkpoints.extend(self.decoder.checkpoints)
        return encoder_outputs


class GPTForPretraining(nn.Layer):
    """
    The pretraining model of GPT.
    It returns some logits and cached_kvs.
    """

    def __init__(
713 714 715 716 717 718
        self,
        gpt,
        vocab_size=50304,
        hidden_size=768,
        initializer_range=0.02,
    ):
719 720 721 722 723 724 725 726 727 728
        super(GPTForPretraining, self).__init__()
        self.gpt = gpt

    def forward(self,
                input_ids,
                position_ids=None,
                attention_mask=None,
                masked_positions=None,
                use_cache=False,
                cache=None):
729 730 731 732
        input_ids.stop_gradient = True
        position_ids.stop_gradient = True
        attention_mask.stop_gradient = True

733 734 735 736 737 738 739 740 741
        outputs = self.gpt(input_ids,
                           position_ids=position_ids,
                           attention_mask=attention_mask,
                           use_cache=use_cache,
                           cache=cache)
        if use_cache:
            encoder_outputs, cached_kvs = outputs[:2]
        else:
            encoder_outputs = outputs
742 743 744 745

        x = encoder_outputs
        w = self.gpt.embeddings.word_embeddings.weight

746
        mesh = None
747 748
        if _global_parallel_strategy == "pp":
            mesh = PP_MESH_LIST[-1]
749 750
            x_dims_mapping = [None for i in range(len(x.shape))]
            w_dims_mapping = [None for i in range(len(w.shape))]
751
        elif _global_parallel_strategy == "dp":
752 753 754
            mesh = _global_process_mesh
            x_dims_mapping = ["x"] + [None for i in range(len(x.shape) - 1)]
            w_dims_mapping = [None for i in range(len(w.shape))]
755
        elif _global_parallel_strategy == "mp":
756 757 758
            mesh = _global_process_mesh
            x_dims_mapping = [None for i in range(len(x.shape))]
            w_dims_mapping = ["x"] + [None for i in range(len(w.shape) - 1)]
759
        elif _global_parallel_strategy == "dp_mp":
760 761 762
            mesh = _global_process_mesh
            x_dims_mapping = ["x"] + [None for i in range(len(x.shape) - 1)]
            w_dims_mapping = ["y"] + [None for i in range(len(w.shape) - 1)]
763 764
        elif _global_parallel_strategy == "dp_pp":
            mesh = DPPP_MESH_LIST[-1]
765 766
            x_dims_mapping = ["x"] + [None for i in range(len(x.shape) - 1)]
            w_dims_mapping = [None for i in range(len(w.shape))]
767 768
        elif _global_parallel_strategy == "mp_pp":
            mesh = MPPP_MESH_LIST[-1]
769 770
            x_dims_mapping = [None for i in range(len(x.shape))]
            w_dims_mapping = ["x"] + [-1 for i in range(len(w.shape) - 1)]
771 772
        elif _global_parallel_strategy == "dp_mp_pp":
            mesh = DPMPPP_MESH_LIST[-1]
773 774 775 776 777 778 779 780 781
            x_dims_mapping = ["x"] + [None for i in range(len(x.shape) - 1)]
            w_dims_mapping = ["y"] + [None for i in range(len(w.shape) - 1)]

        if mesh:
            matmul = auto.shard_op(paddle.matmul, mesh,
                                   [x_dims_mapping, w_dims_mapping, None])
            logits = matmul(x, w, transpose_y=True)
        else:
            logits = paddle.matmul(x, w, transpose_y=True)
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
        if use_cache:
            return logits, cached_kvs
        else:
            return logits


class GPTPretrainingCriterion(nn.Layer):
    """
    Criterion for GPT.
    It calculates the final loss.
    """

    def __init__(self):
        super(GPTPretrainingCriterion, self).__init__()
        self.loss_func = paddle.nn.CrossEntropyLoss(reduction="none")

    def forward(self, prediction_scores, masked_lm_labels, loss_mask):
800 801
        masked_lm_labels.stop_gradient = True
        loss_mask.stop_gradient = True
802

803
        mesh = None
804
        if _global_parallel_strategy == "dp":
805 806 807
            mesh = _global_process_mesh
            dims_mapping = ["x"
                            ] + [None for i in range(len(loss_mask.shape) - 1)]
808
        elif _global_parallel_strategy == "dp_mp":
809 810 811
            mesh = _global_process_mesh
            dims_mapping = ["x"
                            ] + [None for i in range(len(loss_mask.shape) - 1)]
812 813
        elif _global_parallel_strategy == "dp_pp":
            mesh = DPPP_MESH_LIST[-1]
814 815
            dims_mapping = ["x"
                            ] + [None for i in range(len(loss_mask.shape) - 1)]
816 817
        elif _global_parallel_strategy == "dp_mp_pp":
            mesh = DPMPPP_MESH_LIST[-1]
818 819
            dims_mapping = ["x"
                            ] + [None for i in range(len(loss_mask.shape) - 1)]
820

821 822
        if mesh:
            auto.shard_tensor(loss_mask, mesh, dims_mapping)
823

824 825 826 827 828
        masked_lm_loss = self.loss_func(prediction_scores,
                                        masked_lm_labels.unsqueeze(2))
        loss_mask = loss_mask.reshape([-1])
        masked_lm_loss = paddle.sum(masked_lm_loss.reshape([-1]) * loss_mask)
        total_loss = masked_lm_loss / loss_mask.sum()
Z
zhaoyingli 已提交
829
        return total_loss