c_reduce_op.h 10.4 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <string>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif
L
lw921014 已提交
31

32 33 34 35
#if defined(PADDLE_WITH_GLOO)
#include <gloo/reduce.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif
L
lilong12 已提交
36

L
lw921014 已提交
37 38 39 40 41
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/hccl_helper.h"
#endif

L
lilong12 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
namespace paddle {
namespace operators {

enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };

class CReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

template <ReduceType red_type, typename T>
class CReduceOpCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
67 68 69 70 71 72 73 74 75 76
#if defined(PADDLE_WITH_GLOO)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
    auto root_id = ctx.Attr<int>("root_id");

    auto place = ctx.GetPlace();
    int64_t send_numel = in->numel();
    const T* send_buff = in->data<T>();
    T* recv_buff = out->mutable_data<T>(in->dims(), place);
    auto gloo = paddle::framework::GlooWrapper::GetInstance();
L
lilong12 已提交
77
    PADDLE_ENFORCE_EQ(
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        gloo->IsInitialized(), true,
        platform::errors::PreconditionNotMet(
            "You must initialize the gloo environment first to use it."));
    gloo::ReduceOptions opts(gloo->GetContext());
    opts.setInput(const_cast<T*>(send_buff), send_numel);
    opts.setOutput(recv_buff, send_numel);
    opts.setRoot(root_id);
    switch (red_type) {
      case kRedSum:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::sum<T>));
        break;
      case kRedMax:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::max<T>));
        break;
      case kRedMin:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::min<T>));
        break;
      case kRedProd:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::product<T>));
        break;
      default:
        PADDLE_ENFORCE_EQ(true, false,
                          platform::errors::InvalidArgument(
                              "Invalid reduce type: %d.", red_type));
    }
    gloo::reduce(opts);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
L
lilong12 已提交
116 117 118
  }
};

L
lw921014 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
template <ReduceType red_type, typename T>
class CReduceOpASCENDKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)

    // we need to pre-allocate 512 Bytes before the data
    // and 512 Bytes after the data, so the hccl allreduce
    // can work. This is a must acooding to huawei peer.
    #define PRE_MALLOC_SIZE_BYTES 512

    auto in = ctx.Input<framework::LoDTensor>("X");
    auto out = ctx.Output<framework::LoDTensor>("Out");
    auto place = ctx.GetPlace();
    hcclDataType_t dtype = platform::ToHCCLDataType(in->type());
    int64_t numel = in->numel();

    int64_t pre_tmp_size = PRE_MALLOC_SIZE_BYTES / sizeof(T);
    int64_t tmp_numel = numel + pre_tmp_size * 2;

    paddle::framework::LoDTensor tmp_in, tmp_out;
    tmp_in.Resize({tmp_numel});
    tmp_out.Resize({tmp_numel});
    auto p_tmp_in = tmp_in.mutable_data<T>(place);  // allocate
    auto p_tmp_out = tmp_out.mutable_data<T>(place);  // allocate

    void* sendbuff = reinterpret_cast<void*>(tmp_in.data<T>() + pre_tmp_size);
    void* recvbuff = reinterpret_cast<void*>(tmp_out.data<T>() + pre_tmp_size);

    std::string tag = ctx.Attr<std::string>("tag");
    int ring_id = ctx.Attr<int>("ring_id");
    int root_id = ctx.Attr<int>("root_id");
    std::string group = std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
    auto comm = paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);

    aclrtStream stream = nullptr;
    auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
    if (ctx.Attr<bool>("use_calc_stream")) {
      stream = static_cast<platform::NPUDeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    int rank_id = comm->rank();

    // we need to memset this memory firstly to avoid core by hccl
    platform::NPUMemsetAsync(static_cast<void*>(p_tmp_in), 0, tmp_numel*sizeof(T), stream);
    platform::NPUMemsetAsync(static_cast<void*>(p_tmp_out), 0, tmp_numel*sizeof(T), stream);

    auto npu_place = BOOST_GET_CONST(platform::NPUPlace, place);

    memory::Copy(npu_place, sendbuff,
                 npu_place, reinterpret_cast<void*>(const_cast<T*>(in->data<T>())),
                 numel * sizeof(T),
                 stream);

    hcclRedOp_t hccl_red_type = HCCL_REP_OP_SUM;
    switch (red_type) {
      case kRedSum:
        hccl_red_type = HCCL_REP_OP_SUM;
        break;

      case kRedMax:
        hccl_red_type = HCCL_REP_OP_MAX;
        break;

      case kRedMin:
        hccl_red_type = HCCL_REP_OP_MIN;
        break;

      case kRedProd:
        hccl_red_type = HCCL_REP_OP_PROD;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    VLOG(3) << "begin hccl reduce, parameter is: "
      << "input num: " << numel
      << "root_id: " << root_id
      << "dtype: " << dtype
      << "hccl_red_type: " << hccl_red_type
      << ", group is: " << group
      << ", tag is " << tag;

    PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::hcom_all_reduce(
        tag.c_str(), sendbuff, recvbuff, numel, dtype, hccl_red_type, group.c_str(), (void*)stream));

    if(rank_id == root_id){
      memory::Copy(npu_place, reinterpret_cast<void*>(out->data<T>()),
                  npu_place, recvbuff,
                  numel * sizeof(T),
                  stream);
    }else{
      memory::Copy(npu_place, reinterpret_cast<void*>(out->data<T>()),
            npu_place, reinterpret_cast<void*>(const_cast<T*>(in->data<T>())),
            numel * sizeof(T),
            stream);
    }

    out->Resize(in->dims());
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with NPU."));
#endif
  }
};

L
lilong12 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
template <ReduceType red_type, typename T>
class CReduceOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_NCCL)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    ncclDataType_t dtype = platform::ToNCCLDataType(in->type());
    int64_t numel = in->numel();
    const void* sendbuff = in->data<void>();
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    int root = ctx.Attr<int>("root_id");
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);

    cudaStream_t stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    ncclRedOp_t nccl_red_type = ncclSum;
    switch (red_type) {
      case kRedSum:
        nccl_red_type = ncclSum;
        break;

      case kRedMax:
        nccl_red_type = ncclMax;
        break;

      case kRedMin:
        nccl_red_type = ncclMin;
        break;

      case kRedProd:
        nccl_red_type = ncclProd;
        break;

      default:
        PADDLE_ENFORCE_EQ(true, false, platform::errors::InvalidArgument(
                                           "red_type must be one of kRedSum, "
                                           "kRedMax, kRedMin, kRedProd."));
    }

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclReduce(
        sendbuff, recvbuff, numel, dtype, nccl_red_type, root, comm->comm(),
        stream));
#else
    PADDLE_ENFORCE_EQ(true, false,
                      platform::errors::Unavailable(
                          "PaddlePaddle should compile with GPU.."));
#endif
  }
};

class CReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor), tensor to be reduced.");
    AddOutput("Out", "(Tensor) the reduced result.");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
L
lw921014 已提交
298 299 300 301
#if defined(PADDLE_WITH_ASCEND_CL)
    AddAttr<std::string>("tag", "(string default tag) tag for reduce.")
        .SetDefault("tag");
#endif
L
lilong12 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    AddAttr<int>("root_id", "(int default 0) root id.").SetDefault(0);
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
    AddComment(string::Sprintf(R"DOC(
CReduce %s Operator

Call collective Reduce with reduce type %s. If input and output are
the same variable, in-place reduce will be used.
)DOC",
                               GetName(), GetName()));
  }

 protected:
  virtual std::string GetName() const = 0;
};

}  // namespace operators
}  // namespace paddle