analysis_predictor.cc 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/fluid/framework/feed_fetch_method.h"
22
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
23
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
24
#include "paddle/fluid/framework/ir/pass.h"
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/scope.h"
27 28
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
29
#include "paddle/fluid/inference/api/helper.h"
30
#include "paddle/fluid/inference/api/paddle_inference_api.h"
31
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
32
#include "paddle/fluid/inference/utils/singleton.h"
33
#include "paddle/fluid/memory/memcpy.h"
34
#include "paddle/fluid/platform/cpu_helper.h"
35
#include "paddle/fluid/platform/gpu_info.h"
T
tensor-tang 已提交
36 37
#include "paddle/fluid/platform/profiler.h"

38 39 40 41
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#endif

T
tensor-tang 已提交
42
DECLARE_bool(profile);
43 44 45

namespace paddle {

46 47
using contrib::AnalysisConfig;

48 49 50 51 52 53 54 55 56 57 58
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
      var->GetType() != framework::proto::VarType::FETCH_LIST) {
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
59
bool AnalysisPredictor::Init(
60 61
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
62
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
63 64 65
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
66 67
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
68 69 70
    platform::EnableProfiler(tracking_device);
  }

71
  // no matter with or without MKLDNN
L
luotao1 已提交
72
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
73

74 75 76 77 78 79 80 81 82 83 84 85 86
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
87
  }
88 89 90 91 92 93 94 95 96

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
97
  if (parent_scope) {
98 99 100
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
101
    scope_ = parent_scope;
102
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
103 104 105
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
106
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
107
  }
108 109 110 111 112
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
113 114
  if (!program) {
    if (!LoadProgramDesc()) return false;
115 116 117 118

    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
119
    if (config_.ir_optim()) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // If the parent_scope is passed, we assert that the persistable variables
      // are already created, so just create the no persistable variables.

      // If not cloned, the parameters should be loaded
      // OptimizeInferenceProgram.
      // So in both cases, just the local variables are needed to load, not the
      // parematers.
      executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
136
  } else {
137 138
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
139 140
    inference_program_ = program;
  }
141

142 143 144 145 146
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
147
  if (config_.use_gpu_) {
148
    status_use_gpu_ = true;
149
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
150 151 152 153 154 155 156 157
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
158
                     config_.use_feed_fetch_ops_);
159

160
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
161

162 163 164
  return true;
}

L
luotao1 已提交
165
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
166 167 168 169 170 171 172
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

173 174 175
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
M
minqiyang 已提交
176
  VLOG(3) << "Predictor::predict";
177 178 179 180 181 182
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
183
    return false;
184
  }
185

186 187 188
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
189

190 191 192 193
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
194
  }
195 196 197 198 199 200

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
201
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
202

203 204 205 206 207 208 209
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
210 211
  return true;
}
212

213 214
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
215
  VLOG(3) << "Predictor::set_feed";
216 217 218 219 220 221 222 223 224 225 226 227 228 229
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
230
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
231
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
232
      input_ptr = input.mutable_data<float>(ddim, place_);
233 234 235 236 237
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

238 239 240 241 242 243
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
244 245 246 247
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
248 249 250
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
251
                   inputs[i].data.length(), dev_ctx->stream());
252 253 254 255
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
256 257 258 259 260 261 262
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
263
    if (config_.specify_input_name_) {
264 265
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
266 267
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
268 269
      }
      idx = feed_names_[name];
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
300
  VLOG(3) << "Predictor::get_fetch";
301 302 303 304 305 306 307 308
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
309
    output->name = fetchs_[idx]->Input("X")[0];
310
    if (type == framework::proto::VarType::FP32) {
311 312
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
313
    } else if (type == framework::proto::VarType::INT64) {
314 315 316 317 318 319
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
    } else {
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
    }
  }
Y
Yan Chunwei 已提交
320 321
  return true;
}
322

323
// NOTE All the members in AnalysisConfig should be copied to Argument.
Y
Yan Chunwei 已提交
324
void AnalysisPredictor::OptimizeInferenceProgram() {
325 326
  status_program_optimized_ = true;

327 328
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
329 330
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
  argument_.SetMemoryOptimForceUpdate(config_.memory_optim_force_update_);
T
Tao Luo 已提交
331
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
332
  // Analyze inference_program
333 334
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
335 336
  } else {
    PADDLE_ENFORCE(
337
        !config_.params_file().empty(),
T
Tao Luo 已提交
338
        "Either model_dir or (param_file, prog_file) should be set.");
339 340 341
    PADDLE_ENFORCE(!config_.prog_file().empty());
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
342
  }
343

344
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
345
    LOG(INFO) << "TensorRT subgraph engine is enabled";
346 347 348
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
349
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
350
  }
351

352
  if (config_.use_mkldnn_) {
353
    LOG(INFO) << "MKLDNN is enabled";
354 355 356
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

357
  auto passes = config_.pass_builder()->AllPasses();
358 359 360 361
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
362
  argument_.SetIrAnalysisPasses(passes);
363
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
364 365 366 367 368 369
  argument_.SetScopeNotOwned(const_cast<framework::Scope *>(scope_.get()));
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
370
  inference_program_.reset(
371
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
372
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
373
}
374 375

template <>
376 377
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
378
  VLOG(3) << "create AnalysisConfig";
379
  if (config.use_gpu()) {
380
    // 1. GPU memeroy
381 382 383
    PADDLE_ENFORCE_GT(config.memory_pool_init_size_mb(), 0.f);
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
384
    std::vector<std::string> flags;
385 386 387 388 389 390 391 392 393 394 395

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
396 397
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
398
                         std::to_string(fraction_of_gpu_memory);
399
      flags.push_back(flag);
M
minqiyang 已提交
400
      VLOG(3) << "set flag: " << flag;
401 402 403 404 405
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
406
  if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
407 408
    return nullptr;
  }
409
  return std::move(predictor);
410 411
}

412
void AnalysisPredictor::PrepareFeedFetch() {
413 414
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

433 434 435 436 437 438 439 440
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
463
  // Fix TensorArray reuse not cleaned bug.
464
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
465
  tensor_array_batch_cleaner_.ResetTensorArray();
466 467 468 469 470
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
471
  std::string filename;
472 473 474
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
475 476 477
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
478
    filename = config_.prog_file();
479
  } else {
480
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
481 482 483 484
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
485
    LOG(ERROR) << string::Sprintf(
486 487
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
488 489
    return false;
  }
490 491 492

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
493
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
494 495 496
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
497 498
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
499 500 501 502 503 504 505 506
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
507
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
508
  }
509 510 511 512 513 514 515
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

537
      if (!config_.params_file().empty()) {
538 539 540 541 542 543
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
544
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
545 546 547 548 549
        op->CheckAttrs();
      }
    }
  }

550
  if (!config_.params_file().empty()) {
551 552 553 554 555 556
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
557
    op->SetAttr("file_path", {config_.params_file()});
558 559 560 561
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
562
  framework::NaiveExecutor e(place_);
563 564 565 566
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

567 568
  return true;
}
569 570 571 572 573 574 575 576 577

AnalysisPredictor::~AnalysisPredictor() {
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
578 579 580 581 582 583 584

  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
585 586
}

587
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
588
  std::lock_guard<std::mutex> lk(clone_mutex_);
589 590 591 592 593
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
  } else if (config_.enable_memory_optim() &&
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
  } else if (config_.enable_memory_optim() &&
             config_.memory_optim_force_update_) {
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

654 655
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<contrib::AnalysisConfig>(
656
    const contrib::AnalysisConfig &config) {
657 658 659 660
  return CreatePaddlePredictor<contrib::AnalysisConfig,
                               PaddleEngineKind::kAnalysis>(config);
}

661
}  // namespace paddle
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
684
USE_TRT_CONVERTER(split);
685 686
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
687
USE_TRT_CONVERTER(leaky_relu);
688
#endif
反馈
建议
客服 返回
顶部