test_custom_conj.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest
import numpy as np

import paddle
import paddle.static as static
from paddle.utils.cpp_extension import load, get_build_directory
from paddle.utils.cpp_extension.extension_utils import run_cmd
from utils import paddle_includes, extra_cc_args, extra_nvcc_args

# Because Windows don't use docker, the shared lib already exists in the
# cache dir, it will not be compiled again unless the shared lib is removed.
file = '{}\\custom_relu_module_jit\\custom_relu_module_jit.pyd'.format(
    get_build_directory())
if os.name == 'nt' and os.path.isfile(file):
    cmd = 'del {}'.format(file)
    run_cmd(cmd, True)

custom_ops = load(
    name='custom_conj_jit',
    sources=['custom_conj_op.cc'],
    extra_include_paths=paddle_includes,  # add for Coverage CI
    extra_cxx_cflags=extra_cc_args,  # test for cc flags
    extra_cuda_cflags=extra_nvcc_args,  # test for nvcc flags
    verbose=True)


def is_complex(dtype):
    return dtype == paddle.fluid.core.VarDesc.VarType.COMPLEX64 or \
      dtype == paddle.fluid.core.VarDesc.VarType.COMPLEX128


def to_complex(dtype):
    if dtype == "float32":
        return np.complex64
    elif dtype == "float64":
        return np.complex128
    else:
        return dtype


def conj_dynamic(func, dtype, np_input):
    paddle.set_device("cpu")
    x = paddle.to_tensor(np_input)
    out = func(x)
    out.stop_gradient = False
    sum_out = paddle.sum(out)
    if is_complex(sum_out.dtype):
        sum_out.real().backward()
    else:
        sum_out.backward()
66 67 68 69
    if x.grad is None:
        return out.numpy(), x.grad
    else:
        return out.numpy(), x.grad.numpy()
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139


def conj_static(func, shape, dtype, np_input):
    paddle.enable_static()
    paddle.set_device("cpu")
    with static.scope_guard(static.Scope()):
        with static.program_guard(static.Program()):
            x = static.data(name="x", shape=shape, dtype=dtype)
            x.stop_gradient = False
            out = func(x)
            sum_out = paddle.sum(out)
            static.append_backward(sum_out)

            exe = static.Executor()
            exe.run(static.default_startup_program())

            out_v, x_grad_v = exe.run(static.default_main_program(),
                                      feed={"x": np_input},
                                      fetch_list=[out.name, x.name + "@GRAD"])
    paddle.disable_static()
    return out_v, x_grad_v


class TestCustomConjJit(unittest.TestCase):
    def setUp(self):
        self.dtypes = ['float32', 'float64']
        self.shape = [2, 20, 2, 3]

    def check_output(self, out, pd_out, name):
        self.assertTrue(
            np.array_equal(out, pd_out),
            "custom op {}: {},\n paddle api {}: {}".format(name, out, name,
                                                           pd_out))

    def run_dynamic(self, dtype, np_input):
        out, x_grad = conj_dynamic(custom_ops.custom_conj, dtype, np_input)
        pd_out, pd_x_grad = conj_dynamic(paddle.conj, dtype, np_input)

        self.check_output(out, pd_out, "out")
        self.check_output(x_grad, pd_x_grad, "x's grad")

    def run_static(self, dtype, np_input):
        out, x_grad = conj_static(custom_ops.custom_conj, self.shape, dtype,
                                  np_input)
        pd_out, pd_x_grad = conj_static(paddle.conj, self.shape, dtype,
                                        np_input)

        self.check_output(out, pd_out, "out")
        self.check_output(x_grad, pd_x_grad, "x's grad")

    def test_dynamic(self):
        for dtype in self.dtypes:
            np_input = np.random.random(self.shape).astype(dtype)
            self.run_dynamic(dtype, np_input)

    def test_static(self):
        for dtype in self.dtypes:
            np_input = np.random.random(self.shape).astype(dtype)
            self.run_static(dtype, np_input)

    # complex only used in dynamic mode now
    def test_complex_dynamic(self):
        for dtype in self.dtypes:
            np_input = np.random.random(self.shape).astype(
                dtype) + 1j * np.random.random(self.shape).astype(dtype)
            self.run_dynamic(to_complex(dtype), np_input)


if __name__ == "__main__":
    unittest.main()