set_value_op.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/set_value_op.h"
16

17
#include <string>
18 19

#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22 23
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
template <typename T>
class EmptyGradOpMaker;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

39 40 41
namespace paddle {
namespace operators {

42 43
using Tensor = framework::Tensor;

44 45 46 47 48 49 50 51 52 53 54
class SetValue : public framework::OperatorWithKernel {
 public:
  SetValue(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
55
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
56
  }
57 58 59 60 61 62 63 64 65 66 67

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StepsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
68 69 70 71 72
};

class SetValueMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
73
    // Input
74 75 76
    AddInput("Input", "(Tensor) Input tensor of set_value operator.");
    AddInput("ValueTensor", "(Tensor) Value tensor of set_value operator.")
        .AsDispensable();
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    AddInput("StartsTensorList",
             "(vector<Tensor<int32>>, optional) If provided, set_value will "
             "use this. The shape of the tensor in vector must be [1]."
             "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput("EndsTensorList",
             "(vector<Tensor<int32>>, optional) If provided, set_value will "
             "use this. The shape of the tensor in vector must BE [1]."
             "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();

    AddInput("StepsTensorList",
             "(vector<Tensor<int32>>, optional) If provided, set_value will "
             "use this. The shape of the tensor in vector must BE [1]."
             "It has higher priority compare with attr(steps).")
        .AsDuplicable()
        .AsDispensable();

    // Output
98 99 100 101
    AddOutput("Out",
              "(Tensor) Output tensor of set_value operator. The output is the "
              "same Tensor as input");

102
    // Attr
103 104 105 106 107 108 109 110 111 112
    AddAttr<int>("dtype", "data type of input.")
        .InEnum(
            {framework::proto::VarType::BOOL, framework::proto::VarType::INT32,
             framework::proto::VarType::INT64, framework::proto::VarType::FP32,
             framework::proto::VarType::FP64})
        .SetDefault(framework::proto::VarType::FP32);
    AddAttr<std::vector<int64_t>>(
        "axes", "(list<int64_t>) Axes that `starts` and `ends` apply to.");
    AddAttr<std::vector<int64_t>>(
        "starts",
113 114
        "(list<int64_t>) Starting indices of corresponding axis in `axes`.")
        .SetDefault({});
115 116
    AddAttr<std::vector<int64_t>>(
        "ends",
117 118 119 120 121
        "(list<int64_t>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
    AddAttr<std::vector<int64_t>>(
        "steps", "(list<int64_t>) Stride step from the start to the end.")
        .SetDefault({});
122 123 124
    AddAttr<std::vector<int64_t>>("decrease_axes",
                                  "(list<int>) The axes to decrease.")
        .SetDefault({});
Z
zyfncg 已提交
125 126
    AddAttr<std::vector<int64_t>>("none_axes", "(list<int>) The axes to none.")
        .SetDefault({});
127

128
    AddAttr<std::vector<int>>("bool_values", "Store the bool values.")
129
        .SetDefault({});
130
    AddAttr<std::vector<float>>("fp32_values", "Store the float32 values.")
131
        .SetDefault({});
132
    AddAttr<std::vector<int>>("int32_values", "Store the int32 values.")
133
        .SetDefault({});
134
    AddAttr<std::vector<int64_t>>("int64_values", "Store the int64 values.")
135
        .SetDefault({});
136
    AddAttr<std::vector<double>>("fp64_values", "Store the float64 values.")
137
        .SetDefault({});
138 139 140 141 142 143 144 145

    AddAttr<std::vector<int64_t>>("shape", "(vector<int64_t>) Shape of values.")
        .SetDefault({});
    AddComment(R"DOC(SetValue operator.
Assignment to a Tensor in static mode.
)DOC");
  }
};
146 147 148 149 150 151 152 153 154

template <typename T>
class SetValueGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    if (this->HasInput("ValueTensor")) {
155 156 157 158
      op->SetType("set_value_grad");

      op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
      op->SetInput("ValueTensor", this->Input("ValueTensor"));
159 160 161 162 163 164
      if (this->HasInput("StartsTensorList")) {
        op->SetInput("StartsTensorList", this->Input("StartsTensorList"));
      }
      if (this->HasInput("EndsTensorList")) {
        op->SetInput("EndsTensorList", this->Input("EndsTensorList"));
      }
165 166 167 168 169 170 171 172 173
      if (this->HasInput("StepsTensorList")) {
        op->SetInput("StepsTensorList", this->Input("StepsTensorList"));
      }

      op->SetAttrMap(this->Attrs());

      op->SetOutput(framework::GradVarName("ValueTensor"),
                    this->InputGrad("ValueTensor"));
      op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
174 175 176 177 178 179 180 181 182

    } else {
      op->SetType("assign");
      op->SetInput("X", this->OutputGrad("Out"));
      op->SetOutput("Out", this->InputGrad("Input"));
    }
  }
};

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
class SetValueGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "set_value_grad");

    auto in_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    PADDLE_ENFORCE_LT(
        in_dims.size(), 7,
        platform::errors::InvalidArgument(
            "The dimension of set_value_grad operator's input should be less "
            "than 7, but received dimension is %d.",
            in_dims.size()));

    if (ctx->HasOutput(framework::GradVarName("ValueTensor"))) {
      ctx->ShareDim("ValueTensor",
                    /*->*/ framework::GradVarName("ValueTensor"));
      ctx->ShareLoD("ValueTensor",
                    /*->*/ framework::GradVarName("ValueTensor"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto in_tensor = ctx.Input<Tensor>(framework::GradVarName("Out"));
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   in_tensor->place());
  }
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
        var_name == "StepsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

227 228
DECLARE_INPLACE_OP_INFERER(SetValueOpInplaceInferer, {"Input", "Out"});

229 230 231 232
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
233
namespace plat = paddle::platform;
234

235 236 237
DECLARE_INFER_SHAPE_FUNCTOR(set_value, SetValueInferShapeFunctor,
                            PD_INFER_META(phi::SetValueInferMeta));

238 239 240
REGISTER_OPERATOR(set_value, ops::SetValue, ops::SetValueMaker,
                  ops::SetValueGradMaker<paddle::framework::OpDesc>,
                  ops::SetValueGradMaker<paddle::imperative::OpBase>,
241
                  ops::SetValueOpInplaceInferer, SetValueInferShapeFunctor);
242

243 244
REGISTER_OPERATOR(set_value_grad, ops::SetValueGrad);

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
REGISTER_OP_VERSION(set_value)
    .AddCheckpoint(
        R"ROC(
Upgrade set_value, add 3 inputs [StartsTensorList, EndsTensorList, StepsTensorList] and 1 attribute [steps].
              )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewInput("StartsTensorList",
                      "If provided, set_value will use this.The shape of the "
                      "tensor in vector must be [1]. It has higher priority "
                      "compare with attr(starts).")
            .NewInput("EndsTensorList",
                      "If provided, set_value will use this.The shape of the "
                      "tensor in vector must be [1]. It has higher priority "
                      "compare with attr(ends).")
            .NewInput("StepsTensorList",
                      "If provided, set_value will use this.The shape of the "
                      "tensor in vector must be [1]. It has higher priority "
                      "compare with attr(steps).")
            .ModifyAttr("starts",
                        "Starting indices of corresponding axis in `axes`.",
                        std::vector<int64_t>{})
            .ModifyAttr("ends",
                        "Ending indices of corresponding axis in `axes`.",
                        std::vector<int64_t>{})
            .NewAttr("steps", "Stride step from the start to the end.",
270 271 272 273 274 275
                     std::vector<int64_t>{}))
    .AddCheckpoint(
        R"ROC(
Upgrade set_value, add 1 attribute [decrease_axes].
              )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
Z
zyfncg 已提交
276 277 278 279 280 281 282
            "decrease_axes", "The axes to decrease.", std::vector<int64_t>{}))
    .AddCheckpoint(
        R"ROC(
Upgrade set_value, add 1 attribute [none_axes].
              )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "none_axes", "The axes with none index.", std::vector<int64_t>{}));