c_split_op.cu 3.8 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <vector>

#include "paddle/fluid/operators/collective/c_split_op.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
L
lilong12 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T>
__global__ void SplitFromRank(const T* input, T* output, const int rows,
                              const int columns, const int rank,
                              const int nranks, const int limit) {
  CUDA_KERNEL_LOOP(i, limit) {
    int row = i / columns;
    int col = i % columns;

    int block = columns / nranks;
    int start = block * rank;
    int end = start + block;

    if (col >= start && col < end) {
      int idx = block * row + col % block;
      output[idx] = input[i];
    }
  }
}

L
lilong12 已提交
51 52 53 54 55 56 57 58 59 60 61
template <typename T>
class CSplitOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto x = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    int nranks = ctx.Attr<int>("nranks");
    int rank = ctx.Attr<int>("rank");
    auto place = ctx.GetPlace();

62 63 64 65 66
    PADDLE_ENFORCE_GE(rank, 0,
                      platform::errors::PreconditionNotMet(
                          "The value of rank (%d) for c_split must be "
                          "greater than or equal to 0.",
                          rank));
L
lilong12 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79
    PADDLE_ENFORCE_GE(nranks, 2,
                      platform::errors::PreconditionNotMet(
                          "The value of nranks (%d) for c_split must be "
                          "greater than or equal to 2.",
                          nranks));
    PADDLE_ENFORCE_LT(rank, nranks,
                      platform::errors::PreconditionNotMet(
                          "The value of rank (%d) for c_split must be "
                          "less than that of nranks (%d).",
                          rank, nranks));

    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto dims = x->dims();
80 81 82
    auto dims_size = dims.size();
    // final dim
    int64_t end_size = dims[dims_size - 1];
L
lilong12 已提交
83

84
    // remain dim
85 86
    auto remain_ddim = phi::slice_ddim(dims, 0, dims_size - 1);
    int64_t remain_numel = phi::product(remain_ddim);
87 88 89 90 91 92

    int limit = x->numel();
    int blocks = NumBlocks(limit);
    int threads = kNumCUDAThreads;

    dims[dims_size - 1] /= nranks;
L
lilong12 已提交
93
    out->mutable_data<T>(dims, place);
94 95 96 97

    SplitFromRank<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
        x->data<T>(), out->data<T>(), remain_numel, end_size, rank, nranks,
        limit);
L
lilong12 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(c_split, ops::CSplitOpCUDAKernel<float>,
                        ops::CSplitOpCUDAKernel<double>,
                        ops::CSplitOpCUDAKernel<int>,
                        ops::CSplitOpCUDAKernel<int64_t>,
                        ops::CSplitOpCUDAKernel<plat::float16>);