c_concat_op.cu.cc 4.9 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/collective/c_concat_op.h"

L
lilong12 已提交
17 18 19
#include <vector>

#include "paddle/fluid/operators/math/concat_and_split.h"
20
#include "paddle/phi/api/include/tensor.h"
L
lilong12 已提交
21 22

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
23
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
L
lilong12 已提交
24
#include "paddle/fluid/platform/collective_helper.h"
25
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
L
lilong12 已提交
26 27 28 29 30 31 32 33 34 35 36
#endif

namespace paddle {
namespace operators {

template <typename T>
class CConcatOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto x = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
37 38
    ncclDataType_t dtype =
        platform::ToNCCLDataType(framework::TransToProtoVarType(x->dtype()));
L
lilong12 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

    int nranks = ctx.Attr<int>("nranks");
    int rank = ctx.Attr<int>("rank");
    int rid = ctx.Attr<int>("ring_id");
    auto place = ctx.GetPlace();
    PADDLE_ENFORCE_GE(rank, 0,
                      platform::errors::PreconditionNotMet(
                          "The value of rank (%d) for c_concat must be "
                          "greater than or equal to 0.",
                          rank));
    PADDLE_ENFORCE_GE(nranks, 2,
                      platform::errors::PreconditionNotMet(
                          "The value of nranks (%d) for c_concat must be "
                          "greater than or equal to 2.",
                          nranks));
    PADDLE_ENFORCE_LT(rank, nranks,
                      platform::errors::PreconditionNotMet(
                          "The value of rank (%d) for c_concat must be "
                          "less than that of nranks (%d).",
                          rank, nranks));

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    framework::Tensor temp_out;
    framework::DDim temp_out_dims = x->dims();
    temp_out_dims[0] *= nranks;
    temp_out.mutable_data<T>(temp_out_dims, place);

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    auto map = distributed::ProcessGroupMapFromGid::getInstance();
    if (map->has(rid)) {
      // Use ProcessGroup
      distributed::ProcessGroup* pg = map->get(rid);
      std::vector<phi::DenseTensor> in_tensor;
      std::vector<phi::DenseTensor> out_tensor;
      in_tensor.push_back(*x);
      out_tensor.push_back(temp_out);
      auto task = pg->AllGather(in_tensor, out_tensor);
      task->Wait();
    } else {
      auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
      PADDLE_ENFORCE_EQ(
          nranks, comm->nranks(),
          platform::errors::InvalidArgument("nranks: %s should equal to %s",
                                            nranks, comm->nranks()));

      int64_t send_numel = x->numel();
      const T* send_buff = x->data<T>();
      T* recv_buff = temp_out.data<T>();
      gpuStream_t stream = nullptr;
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();

      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllGather(
          send_buff, recv_buff, send_numel, static_cast<ncclDataType_t>(dtype),
          comm->comm(), stream));
    }
L
lilong12 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    std::vector<framework::Tensor> inputs;
    int axis = x->dims().size() - 1;
    auto out_dims = x->dims();
    out_dims[out_dims.size() - 1] *= nranks;
    int rows_per_tensor = x->dims()[0];
    int offset = 0;
    for (int i = 0; i < nranks; i++) {
      framework::Tensor temp = temp_out.Slice(offset, offset + rows_per_tensor);
      inputs.emplace_back(temp);
      offset += rows_per_tensor;
    }

    math::ConcatFunctor<platform::CUDADeviceContext, T> functor;
    out->mutable_data<T>(out_dims, place);
    auto& dev_ctx2 = ctx.template device_context<platform::CUDADeviceContext>();
    functor(dev_ctx2, inputs, axis, out);
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
#endif
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(c_concat, ops::CConcatOpCUDAKernel<float>,
                        ops::CConcatOpCUDAKernel<double>,
                        ops::CConcatOpCUDAKernel<int>,
                        ops::CConcatOpCUDAKernel<int64_t>,
                        ops::CConcatOpCUDAKernel<plat::float16>);