io_utils.cc 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/utils/io_utils.h"
16 17 18 19 20 21 22

#include <fcntl.h>

#include <utility>

#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/text_format.h"
23
#include "paddle/fluid/inference/analysis/helper.h"
24
#include "paddle/fluid/inference/utils/shape_range_info.pb.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

namespace paddle {
namespace inference {

// =========================================================
//       Item        |        Type       |      Bytes
// ---------------------------------------------------------
//      Version      |      uint32_t     |        4
// ---------------------------------------------------------
//   Bytes of `Name` |      uint64_t     |        8
//        Name       |        char       |  Bytes of `Name`
// ---------------------------------------------------------
//      LoD Level    |      uint64_t     |        8
//  Bytes of `LoD[0]`|      uint64_t     |        8
//       LoD[0]      |      uint64_t     | Bytes of `LoD[0]`
//        ...        |         ...       |       ...
// ---------------------------------------------------------
//   Dims of `Shape` |      uint64_t     |        8
//       Shape       |      uint64_t     |    Dims * 4
// ---------------------------------------------------------
//       Dtype       |       int32_t     |        4
//  Bytes of `Data`  |      uint64_t     |        8
//        Data       |        Dtype      |  Bytes of `Data`
// =========================================================
void SerializePDTensorToStream(std::ostream *os, const PaddleTensor &tensor) {
  // 1. Version
  os->write(reinterpret_cast<const char *>(&kCurPDTensorVersion),
            sizeof(kCurPDTensorVersion));
  // 2. Name
  uint64_t name_bytes = tensor.name.size();
  os->write(reinterpret_cast<char *>(&name_bytes), sizeof(name_bytes));
  os->write(tensor.name.c_str(), name_bytes);
  // 3. LoD
  auto lod = tensor.lod;
  uint64_t lod_size = lod.size();
  os->write(reinterpret_cast<const char *>(&lod_size), sizeof(lod_size));
  for (auto &each : lod) {
    auto size = each.size() * sizeof(size_t);
    os->write(reinterpret_cast<const char *>(&size), sizeof(size));
    os->write(reinterpret_cast<const char *>(each.data()),
              static_cast<std::streamsize>(size));
  }
  // 4. Shape
  size_t dims = tensor.shape.size();
  os->write(reinterpret_cast<const char *>(&dims), sizeof(dims));
  os->write(reinterpret_cast<const char *>(tensor.shape.data()),
            sizeof(int) * dims);
  // 5. Data
  os->write(reinterpret_cast<const char *>(&tensor.dtype),
            sizeof(tensor.dtype));
  uint64_t length = tensor.data.length();
  os->write(reinterpret_cast<const char *>(&length), sizeof(size_t));
  os->write(reinterpret_cast<const char *>(tensor.data.data()), length);
}

void DeserializePDTensorToStream(std::istream &is, PaddleTensor *tensor) {
  // 1. Version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  // 2. Name
  uint64_t name_bytes;
  is.read(reinterpret_cast<char *>(&name_bytes), sizeof(name_bytes));
  std::vector<char> bytes(name_bytes);
  is.read(bytes.data(), name_bytes);
  tensor->name = std::string(bytes.data(), name_bytes);
  // 3. LoD
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto *lod = &(tensor->lod);
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    (*lod)[i] = tmp;
  }
  // 4. Shape
  size_t dims;
  is.read(reinterpret_cast<char *>(&dims), sizeof(dims));
  tensor->shape.resize(dims);
  is.read(reinterpret_cast<char *>(tensor->shape.data()), sizeof(int) * dims);
  // 5. Data
  uint64_t length;
  is.read(reinterpret_cast<char *>(&tensor->dtype), sizeof(tensor->dtype));
  is.read(reinterpret_cast<char *>(&length), sizeof(length));
  tensor->data.Resize(length);
  is.read(reinterpret_cast<char *>(tensor->data.data()), length);
}

// =========================================================
//       Item        |        Type       |      Bytes
// ---------------------------------------------------------
//      Version      |      uint32_t     |        4
// ---------------------------------------------------------
//   Size of Tensors |      uint64_t     |        8
//      Tensors      |        ----       |       ---
// ---------------------------------------------------------
void SerializePDTensorsToStream(std::ostream *os,
                                const std::vector<PaddleTensor> &tensors) {
  // 1. Version
  os->write(reinterpret_cast<const char *>(&kCurPDTensorVersion),
            sizeof(kCurPDTensorVersion));
  // 2. Tensors
  uint64_t num = tensors.size();
  os->write(reinterpret_cast<char *>(&num), sizeof(num));
  for (const auto &tensor : tensors) {
    SerializePDTensorToStream(os, tensor);
  }
}

void DeserializePDTensorsToStream(std::istream &is,
                                  std::vector<PaddleTensor> *tensors) {
  // 1. Version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  // 2. Tensors
  uint64_t num;
  is.read(reinterpret_cast<char *>(&num), sizeof(num));
  tensors->resize(num);
  for (auto &tensor : *tensors) {
    DeserializePDTensorToStream(is, &tensor);
  }
}

void SerializePDTensorsToFile(const std::string &path,
                              const std::vector<PaddleTensor> &tensors) {
  std::ofstream fout(path, std::ios::binary);
  SerializePDTensorsToStream(&fout, tensors);
  fout.close();
}

void DeserializePDTensorsToFile(const std::string &path,
                                std::vector<PaddleTensor> *tensors) {
  bool is_present = analysis::FileExists(path);
161 162 163
  PADDLE_ENFORCE_EQ(
      is_present, true,
      platform::errors::InvalidArgument("Cannot open %s to read", path));
164 165 166 167 168
  std::ifstream fin(path, std::ios::binary);
  DeserializePDTensorsToStream(fin, tensors);
  fin.close();
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
void SerializeShapeRangeInfo(
    const std::string &path,
    const paddle::inference::proto::ShapeRangeInfos &info) {
  int out_fd = open(path.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
  google::protobuf::io::FileOutputStream *os =
      new google::protobuf::io::FileOutputStream(out_fd);
  google::protobuf::TextFormat::Print(info, os);
  delete os;
  close(out_fd);
}

void SerializeShapeRangeInfo(
    const std::string &path,
    const std::map<std::string, std::vector<int32_t>> &min_shape,
    const std::map<std::string, std::vector<int32_t>> &max_shape,
    const std::map<std::string, std::vector<int32_t>> &opt_shape) {
  paddle::inference::proto::ShapeRangeInfos shape_range_infos;
  for (auto it : min_shape) {
    auto *s = shape_range_infos.add_shape_range_info();
    s->set_name(it.first);
    for (size_t i = 0; i < it.second.size(); ++i) {
      s->add_min_shape(it.second[i]);
      s->add_max_shape(max_shape.at(it.first)[i]);
      s->add_opt_shape(opt_shape.at(it.first)[i]);
    }
  }

  inference::SerializeShapeRangeInfo(path, shape_range_infos);
}
void DeserializeShapeRangeInfo(
    const std::string &path, paddle::inference::proto::ShapeRangeInfos *info) {
  int fd = open(path.c_str(), O_RDONLY);
W
Wilber 已提交
201 202 203
  if (fd == -1) {
    PADDLE_THROW(platform::errors::NotFound("File [%s] is not found.", path));
  }
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  google::protobuf::io::FileInputStream *is =
      new google::protobuf::io::FileInputStream(fd);
  google::protobuf::TextFormat::Parse(is, info);
  delete is;
  close(fd);
}

void DeserializeShapeRangeInfo(
    const std::string &path,
    std::map<std::string, std::vector<int32_t>> *min_shape,
    std::map<std::string, std::vector<int32_t>> *max_shape,
    std::map<std::string, std::vector<int32_t>> *opt_shape) {
  paddle::inference::proto::ShapeRangeInfos shape_range_infos;
  DeserializeShapeRangeInfo(path, &shape_range_infos);
  for (int i = 0; i < shape_range_infos.shape_range_info_size(); ++i) {
    auto info = shape_range_infos.shape_range_info(i);
    auto name = info.name();
    if (min_shape->count(name) || max_shape->count(name) ||
        opt_shape->count(name)) {
      continue;
    } else {
      std::vector<int32_t> tmp(info.min_shape_size());
      for (size_t k = 0; k < tmp.size(); ++k) tmp[k] = info.min_shape(k);
      min_shape->insert(std::make_pair(name, tmp));

      tmp.resize(info.max_shape_size());
      for (size_t k = 0; k < tmp.size(); ++k) tmp[k] = info.max_shape(k);
      max_shape->insert(std::make_pair(name, tmp));

      tmp.resize(info.opt_shape_size());
      for (size_t k = 0; k < tmp.size(); ++k) tmp[k] = info.opt_shape(k);
      opt_shape->insert(std::make_pair(name, tmp));
    }
  }
}

void UpdateShapeRangeInfo(
    const std::string &path,
    const std::map<std::string, std::vector<int32_t>> &min_shape,
    const std::map<std::string, std::vector<int32_t>> &max_shape,
    const std::map<std::string, std::vector<int32_t>> &opt_shape,
    const std::vector<std::string> &names) {
  paddle::inference::proto::ShapeRangeInfos shape_range_infos;
  DeserializeShapeRangeInfo(path, &shape_range_infos);

  for (int i = 0; i < shape_range_infos.shape_range_info_size(); ++i) {
    auto *info = shape_range_infos.mutable_shape_range_info(i);
    for (const auto &name : names) {
      if (info->name() == name) {
        info->clear_min_shape();
        info->clear_max_shape();
        info->clear_opt_shape();
        for (size_t j = 0; j < min_shape.at(name).size(); ++j)
          info->add_min_shape(min_shape.at(name)[j]);
        for (size_t j = 0; j < max_shape.at(name).size(); ++j)
          info->add_max_shape(max_shape.at(name)[j]);
        for (size_t j = 0; j < opt_shape.at(name).size(); ++j)
          info->add_opt_shape(opt_shape.at(name)[j]);
        break;
      }
    }
  }
  inference::SerializeShapeRangeInfo(path, shape_range_infos);
}

269 270
}  // namespace inference
}  // namespace paddle