dense.h 9.3 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <math.h>  // for sqrt in CPU and CUDA
18

T
tangwei12 已提交
19 20 21 22 23 24
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>

25
#include "gflags/gflags.h"
T
tangwei12 已提交
26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/distributed/common/utils.h"

namespace paddle {
namespace distributed {

// dense optimzier
// TODO(tangwei12) integrate with sparse optimzer later.
class DenseOptimizer {
 public:
  DenseOptimizer() {}
  explicit DenseOptimizer(const CommonAccessorParameter& accessor,
                          std::vector<std::vector<float>>* values) {}
Z
zhaocaibei123 已提交
38
  virtual void Update(const float* update_values, size_t num, int begin,
T
tangwei12 已提交
39
                      int end) = 0;
Z
zhaocaibei123 已提交
40
  virtual void SetGlobalLR(float* lr) { global_learning_rate_ = lr; }
41 42 43

 protected:
  float* global_learning_rate_;
T
tangwei12 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
};

// sum calc for dense tensor
class DSUM : public DenseOptimizer {
 public:
  explicit DSUM(const CommonAccessorParameter& accessor,
                std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
    }
  }

Z
zhaocaibei123 已提交
59
  void Update(const float* update_values, size_t num, int begin,
T
tangwei12 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
              int end) override {
    auto update_numel = end - begin;
    GetBlas<float>().VADD(update_numel, update_values + begin, param + begin,
                          param + begin);
  }

  float* param;
};

// sgd optimizer for dense tensor
class DSGD : public DenseOptimizer {
 public:
  explicit DSGD(const CommonAccessorParameter& accessor,
                std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
      }
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
    }
  }

Z
zhaocaibei123 已提交
85
  void Update(const float* update_values, size_t num, int begin,
T
tangwei12 已提交
86 87 88 89 90 91
              int end) override {
    auto update_numel = end - begin;
    std::vector<float> grads;
    grads.resize(update_numel);

    auto blas = GetBlas<float>();
92
    float lr = *(global_learning_rate_) * (*learning_rate);
T
tangwei12 已提交
93
    blas.VCOPY(update_numel, update_values + begin, grads.data());
94
    blas.SCAL(update_numel, lr, grads.data());
T
tangwei12 已提交
95 96 97 98 99 100 101 102
    blas.VSUB(update_numel, param + begin, grads.data(), param + begin);
  }

  float* learning_rate;
  float* param;
};

// adam optimizer for dense tensor
103
// TODO(zhaocaibei123): add CHECK(memory_dense_table.task_pool_size_) == 1
T
tangwei12 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
class DAdam : public DenseOptimizer {
 public:
  explicit DAdam(const CommonAccessorParameter& accessor,
                 std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
      }
      if (names[x] == "Param") {
        param = (*values)[x].data();
      }
      if (names[x] == "Moment1") {
        moment1 = (*values)[x].data();
      }
      if (names[x] == "Moment2") {
        moment2 = (*values)[x].data();
      }
      if (names[x] == "Beta1Pow") {
        beta1_pow = (*values)[x].data();
      }
      if (names[x] == "Beta2Pow") {
        beta2_pow = (*values)[x].data();
      }
    }

    // add attr later
    beta1 = 0.9;
    beta2 = 0.999;
    epsilon = 1.0e-8;
  }

136
  // make sure memory_dense_table.task_pool_size_ == 1;
137
  // otherwise, task_pool_size_ times beta1_pow/beta2_pow multiplication
Z
zhaocaibei123 已提交
138
  void Update(const float* update_values, size_t num, int begin,
T
tangwei12 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
              int end) override {
    auto update_numel = end - begin;
    std::vector<float> grad, grad2, tmp;
    grad.resize(update_numel);
    grad2.resize(update_numel);
    tmp.resize(update_numel);

    auto blas = GetBlas<float>();
    blas.VCOPY(update_numel, update_values + begin, grad.data());
    blas.VCOPY(update_numel, update_values + begin, grad2.data());

    blas.SCAL(update_numel, 1 - beta1, grad.data());
    blas.VSQUARE(update_numel, grad2.data(), grad2.data());
    blas.SCAL(update_numel, 1 - beta2, grad2.data());

    blas.SCAL(update_numel, beta1, moment1 + begin);
    blas.VADD(update_numel, moment1 + begin, grad.data(), moment1 + begin);
    blas.SCAL(update_numel, beta2, moment2 + begin);
    blas.VADD(update_numel, moment2 + begin, grad2.data(), moment2 + begin);

    beta1_pow[0] = beta1_pow[0] * beta1;
    beta2_pow[0] = beta2_pow[0] * beta2;

162
    float lr_ = *(global_learning_rate_)*learning_rate[0];
T
tangwei12 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    lr_ *= sqrt(1 - beta2_pow[0]) / (1 - beta1_pow[0]);

    float* tmp_ = tmp.data();
    float eps_ = epsilon * sqrt(1 - beta2_pow[0]);

    SQRT<float>(update_numel, moment2 + begin, tmp_);
    ADD<float>(update_numel, tmp_, eps_, tmp_);

    blas.VDIV(update_numel, moment1 + begin, tmp_, tmp_);
    blas.SCAL(update_numel, lr_, tmp_);
    blas.VSUB(update_numel, param + begin, tmp_, param + begin);
  }

  float* learning_rate;

  float* param;
  float* moment1;
  float* moment2;

  float* beta1_pow;
  float* beta2_pow;

  float beta1;
  float beta2;
  float epsilon;
};

190 191 192 193 194 195 196 197 198 199
// adam optimizer for dense tensor
class DAdamD2Sum : public DenseOptimizer {
 public:
  explicit DAdamD2Sum(const CommonAccessorParameter& accessor,
                      std::vector<std::vector<float>>* values) {
    lr_hardcode = 5e-6;
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "LearningRate") {
        learning_rate = (*values)[x].data();
200
      } else if (names[x] == "Param") {
201
        param = (*values)[x].data();
202
      } else if (names[x] == "Moment") {
203
        mom_velocity = (*values)[x].data();
204
      } else if (names[x] == "G2Sum") {
205
        ada_g2sum = (*values)[x].data();
206
      } else if (names[x] == "D2Sum") {
207
        ada_d2sum = (*values)[x].data();
208
      } else if (names[x] == "MomentDecayRate") {
209
        mom_decay_rate = (*values)[x].data();
210
      } else if (names[x] == "AdaDecayRate") {
211
        ada_decay_rate = (*values)[x].data();
212
      } else if (names[x] == "AdaEpsilon") {
213 214 215 216 217
        ada_epsilon = (*values)[x].data();
      }
    }
  }

Z
zhaocaibei123 已提交
218
  void Update(const float* update_values, size_t num, int begin,
219 220
              int end) override {
    auto update_numel = end - begin;
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    Eigen::Map<Eigen::MatrixXf> mat_ada_g2sum(ada_g2sum + begin, 1,
                                              update_numel);

    Eigen::Map<Eigen::MatrixXf> mat_ada_d2sum(ada_d2sum + begin, 1,
                                              update_numel);
    Eigen::Map<Eigen::MatrixXf> mat_mom_velocity(mom_velocity + begin, 1,
                                                 update_numel);
    Eigen::Map<Eigen::MatrixXf> mat_w(param + begin, 1, update_numel);

    Eigen::Map<const Eigen::MatrixXf> mat_grad(update_values + begin, 1,
                                               update_numel);

    mat_ada_d2sum = (mat_ada_d2sum * ada_decay_rate[0]).array() + 1;
    mat_ada_g2sum =
        (mat_ada_g2sum * ada_decay_rate[0]) + mat_grad.cwiseProduct(mat_grad);

    thread_local std::vector<float> scale_vec;
    scale_vec.resize(update_numel);
    Eigen::Map<Eigen::MatrixXf> scale(scale_vec.data(), 1, update_numel);
    memcpy(scale_vec.data(), mat_ada_d2sum.data(),
           sizeof(float) * update_numel);

    scale = scale.array() * ada_epsilon[0];
    scale = (mat_ada_d2sum + scale).cwiseQuotient(mat_ada_g2sum + scale);
    scale = scale.cwiseSqrt();
    mat_mom_velocity =
        (mat_mom_velocity - mat_grad) * mom_decay_rate[0] + mat_grad;

    mat_w -= learning_rate[0] * mat_mom_velocity.cwiseProduct(scale);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  }

  float* learning_rate;
  float lr_hardcode;

  float* param;
  float* mom_velocity;
  float* ada_g2sum;
  float* ada_d2sum;

  float* mom_decay_rate;
  float* ada_decay_rate;
  float* ada_epsilon;
};

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
// for data_norm
class DSummary : public DenseOptimizer {
 public:
  explicit DSummary(const CommonAccessorParameter& accessor,
                    std::vector<std::vector<float>>* values) {
    auto& names = accessor.params();
    for (int x = 0; x < static_cast<int>(names.size()); ++x) {
      if (names[x] == "Param") {
        param = (*values)[x].data();
      } else if (names[x] == "SummaryDecayRate") {
        summary_decay_rate = (*values)[x].data();
      }
    }
  }

Z
zhaocaibei123 已提交
280
  void Update(const float* update_values, size_t num, int begin,
281 282 283 284 285 286 287 288 289 290 291 292 293
              int end) override {
    auto update_numel = end - begin;
    Eigen::Map<Eigen::MatrixXf> mat_w(param + begin, 1, update_numel);
    Eigen::Map<const Eigen::MatrixXf> mat_grad(update_values + begin, 1,
                                               update_numel);
    mat_w = mat_w * summary_decay_rate_d + mat_grad;
  }

  float* summary_decay_rate;
  double summary_decay_rate_d = 0.999999;
  float* param;
};

T
tangwei12 已提交
294 295
}  // namespace distributed
}  // namespace paddle