prefetch_op.cc 3.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <future>  // NOLINT
Q
Qiao Longfei 已提交
16 17 18 19 20
#include <ostream>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
G
gongweibao 已提交
21
#include "paddle/fluid/operators/detail/macros.h"
Q
Qiao Longfei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include "paddle/fluid/operators/send_recv_util.h"

namespace paddle {
namespace operators {

class PrefetchOp : public framework::OperatorBase {
 public:
  PrefetchOp(const std::string& type, const framework::VariableNameMap& inputs,
             const framework::VariableNameMap& outputs,
             const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

  void RunImpl(const framework::Scope& scope,
               const platform::Place& place) const override {
    auto ins = Inputs("X");
    auto outs = Outputs("Out");

    std::vector<std::string> epmap = Attr<std::vector<std::string>>("epmap");

    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& ctx = *pool.Get(place);

44 45
    distributed::RPCClient* rpc_client =
        distributed::RPCClient::GetInstance<RPCCLIENT_T>();
Q
Qiao Longfei 已提交
46

47
    std::vector<distributed::VarHandlePtr> rets;
Q
Qiao Longfei 已提交
48 49
    for (size_t i = 0; i < ins.size(); i++) {
      if (NeedSend(scope, ins[i])) {
50 51
        VLOG(3) << "sending " << ins[i] << " to " << epmap[i] << " to get "
                << outs[i] << " back";
52 53
        rets.push_back(rpc_client->AsyncPrefetchVar(epmap[i], ctx, scope,
                                                    ins[i], outs[i]));
Q
Qiao Longfei 已提交
54 55 56 57
      } else {
        VLOG(3) << "don't send no-initialied variable: " << ins[i];
      }
    }
58 59 60
    for (size_t i = 0; i < rets.size(); i++) {
      PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
    }
Q
Qiao Longfei 已提交
61 62 63 64 65
  }
};

class PrefetchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() {
Q
Qiao Longfei 已提交
67 68
    AddInput("X", "(LoDTensor) Input Id variables to be sent").AsDuplicable();
    AddOutput("Out",
69
              "(LoDTensor) result "
Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
              "to be fetched from parameter server")
        .AsDuplicable();
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({"127.0.0.1:6164"});
    AddComment(R"DOC(
Prefetch operator

This operator will send Ids variables to listen_and_serve op at
the parameter server and fetch result back.
)DOC");
  }
};

class PrefetchOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {}
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(prefetch, ops::PrefetchOp,
                  paddle::framework::EmptyGradOpMaker, ops::PrefetchOpMaker,
                  ops::PrefetchOpShapeInference);