common.py 90.9 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
16
from paddle.common_ops_import import (
17
    LayerHelper,
18 19 20 21
    check_type,
    check_variable_and_dtype,
    utils,
)
22 23 24 25 26
from paddle.fluid.data_feeder import check_dtype
from paddle.fluid.framework import Variable, _non_static_mode, static_only
from paddle.fluid.initializer import Constant, Normal
from paddle.fluid.layers.layer_function_generator import templatedoc
from paddle.fluid.param_attr import ParamAttr
27

28 29
__all__ = []

30 31

@static_only
32 33 34 35 36 37 38 39 40
def fc(
    x,
    size,
    num_flatten_dims=1,
    weight_attr=None,
    bias_attr=None,
    activation=None,
    name=None,
):
41
    r"""
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

    Fully-Connected layer can take a tensor or a list of tensor as its inputs.
    It creates a 2-D weight tensor for each input tensor, which represents its
    weight matrix from each input unit to each output unit. The fully connected
    layer multiplies each input tensor with its corresponding weight to produce
    an output tensor with shape :math:`[batch\_size, *, size]` , where :math:`*`
    means any number of additional dimensions. If a list of tensor is given,
    the results of multiple output tensors with shape :math:`[batch\_size, *, size]`
    will be summed up. If :attr:`bias_attr` is not False, a 1-D bias tensor will
    be created and added to the output. Finally, if :attr:`activation` is not None,
    it will be applied to the output as well.

    For a single input tensor :math:`X` , the equation is:

    .. math::

        Out = Act({XW + b})

    For a list of input tensor, the equation is:

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    where:

    * :math:`N`: The number of the input tensors. :math:`N` equals to :math:`len(X)` if :math:`X` is list of tensor.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weight matrix corresponding i-th input tensor.
    * :math:`b`: The bias created by this layer (if needed).
    * :math:`Act`: The activation function.
    * :math:`Out`: The output tensor.

    .. code-block:: text

        # Case 1, input is a single tensor:
        x.data = [[[0.1, 0.2],
                   [0.3, 0.4]]]
        x.shape = (1, 2, 2) # 1 is batch_size

        out = paddle.static.nn.fc(x=x, size=1, num_flatten_dims=2)

        # Get the output:
        out.data = [[0.83234344], [0.34936576]]
        out.shape = (1, 2, 1)

        # Case 2, input is a list of tensor:
        x0.data = [[[0.1, 0.2],
                    [0.3, 0.4]]]
        x0.shape = (1, 2, 2) # 1 is batch_size

        x1.data = [[[0.1, 0.2, 0.3]]]
        x1.shape = (1, 1, 3)

        out = paddle.static.nn.fc(x=[x0, x1], size=2)

        # Get the output:
        out.data = [[0.18669507, 0.1893476]]
        out.shape = (1, 2)

    Args:
103
        x (Tensor|list[Tensor]|tuple[Tensor]): A tensor or a list/tuple of tensors. The number of dimensions
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
            of each tensor is at least 2. The data type should be float16, float32 or float64.
        size (int): The number of output units in this layer, which also means the feature
            size of output tensor.
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimensional tensor will first be flattened
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            tensor is flattened: the first :math:`num\_flatten\_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest :math:`rank(x) - num\_flatten\_dims` dimensions are
            flattened to form the second dimension of the final matrix (width of the matrix).
            For example, assuming that :attr:`x` is a 5-dimensional tensor with a shape
            :math:`[2, 3, 4, 5, 6]` , and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape :math:`[2 * 3 * 4, 5 * 6] = [24, 30]` .
            Default: 1.
        weight_attr (ParamAttr, optional): The attribute for the learnable weight.
            The default value is None, and the weight will be initialized to zero.
            For detailed information, please refer to :attr:`paddle.ParamAttr`.
J
joejiong 已提交
121
            Warning, if x is a list of tensor, weight_attr should also be a list of same length.
122
        bias_attr (ParamAttr|bool, optional): The attribute of the learnable bias.
123 124 125 126
            If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to :attr:`paddle.ParamAttr`. The default value is None and the bias will be
127
            initialized to zero.
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        activation (str, optional): Activation to be applied to the output of
            this layer, such as tanh, softmax, sigmoid, relu. For more information,
            please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None. Normally there is no need for user to set
            it. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, its shape is :math:`[batch\_size, *, size]` , and the data type is same with input.

    Examples:
        .. code-block:: python

          import paddle
          paddle.enable_static()

          # When input is a single tensor
          x = paddle.static.data(name="x", shape=[1, 2, 2], dtype="float32")
          # x: [[[0.1 0.2]
          #      [0.3 0.4]]]
          out = paddle.static.nn.fc(
              x=x,
              size=1,
              num_flatten_dims=2,
              weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=0.5)),
              bias_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=1.0)))
          # out: [[[1.15]
          #        [1.35]]]

          # When input is multiple tensors
          x0 = paddle.static.data(name="x0", shape=[1, 2, 2], dtype="float32")
          # x0: [[[0.1 0.2]
          #       [0.3 0.4]]]
          x1 = paddle.static.data(name="x1", shape=[1, 1, 3], dtype="float32")
          # x1: [[[0.1 0.2 0.3]]]
          out = paddle.static.nn.fc(
              x=[x0, x1],
              size=2,
              weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=0.5)),
              bias_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=1.0)))
          # out: [[1.8 1.8]]
    """
169 170 171 172 173 174 175 176 177
    return paddle.fluid.layers.fc(
        input=x,
        size=size,
        num_flatten_dims=num_flatten_dims,
        param_attr=weight_attr,
        bias_attr=bias_attr,
        act=activation,
        name=name,
    )
178 179


180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
def instance_norm(
    input, epsilon=1e-05, param_attr=None, bias_attr=None, name=None
):
    r"""
    :api_attr: Static Graph

    **Instance Normalization Layer**

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Args:
        input(Tensor): The rank of input tensor can be 2, 3, 4, 5.
            The data type is float32 or float64.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
         will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
         If the Initializer of the param_attr is not set, the parameter is initialized
         with Xavier. If the param_attr is set to False, instance_norm will not create param_attr.
             Default: None.
        bias_attr(ParamAttr|None|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
         will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
         If the Initializer of the bias_attr is not set, the bias is initialized zero.
             If the bias_attr is set to False, instance_norm will not create bias_attr.
         Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        A Tensor which is the result after applying instance normalization on the input,
        has same shape and data type with input.

    Examples:

        .. code-block:: python

            import paddle
            paddle.enable_static()
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x, size=200)
            hidden2 = paddle.static.nn.instance_norm(hidden1)
    """
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'instance_norm'
    )
    if param_attr is False:
        assert (
            bias_attr is False
        ), "param_attr and bias_attr must be set to False at the same time in instance_norm"

    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == paddle.framework.core.VarDesc.VarType.FP16:
        dtype = paddle.framework.core.VarDesc.VarType.FP32

    input_shape = input.shape
    if len(input.shape) < 2 or len(input.shape) > 5:
        raise ValueError(
            'expected 2D or 3D or 4D or 5D input (got {}D input, input shape is: {})'.format(
                len(input.shape), input_shape
            )
        )
    channel_num = input_shape[1]

    param_shape = [channel_num]

    if param_attr and bias_attr:
        # create parameter
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=param_shape,
            dtype=dtype,
            is_bias=True,
            default_initializer=Constant(0.0),
        )

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    inputs = {"X": input}
    if param_attr and bias_attr:
        inputs["Scale"] = scale
        inputs["Bias"] = bias

    helper.append_op(
        type="instance_norm",
        inputs=inputs,
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance,
        },
        attrs={
            "epsilon": epsilon,
        },
    )

    return instance_norm_out


@static_only
def data_norm(
    input,
    act=None,
    epsilon=1e-05,
    param_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    slot_dim=-1,
    sync_stats=False,
    summary_decay_rate=0.9999999,
    enable_scale_and_shift=False,
):
    r"""
    :api_attr: Static Graph

    **Data Normalization Layer**

    This op can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(Tensor): The input Tensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
        enable_scale_and_shift(bool, Default False): do scale&shift after normalization.

    Returns:
        Tensor: A tensor which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.randn(shape=[32,100])
            hidden2 = paddle.static.nn.data_norm(input=x)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4
    scale_w_default = 1.0
    bias_default = 0.0

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)
    if enable_scale_and_shift:
        scale_w_default = param_attr.get("scale_w", 1.0)
        bias_default = param_attr.get("bias", 0.0)

    # create scale and shift(bias) when enable_scale_and_shift is True
    if name is None:
        name = "dn"
    if enable_scale_and_shift:
        scale_w = helper.create_parameter(
            attr=ParamAttr(
                name=name + '.scale_w',
                initializer=Constant(value=float(scale_w_default)),
                trainable=True,
            ),
            shape=param_shape,
            dtype=input.dtype,
        )
        bias = helper.create_parameter(
            attr=ParamAttr(
                name=name + '.bias',
                initializer=Constant(value=float(bias_default)),
                trainable=True,
            ),
            shape=param_shape,
            dtype=input.dtype,
        )
    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    inputs = {
        "X": input,
        "BatchSize": batch_size,
        "BatchSum": batch_sum,
        "BatchSquareSum": batch_square_sum,
    }
    attrs = {
        "epsilon": epsilon,
        "data_layout": data_layout,
        "sync_stats": sync_stats,
        "summary_decay_rate": summary_decay_rate,
    }
    if slot_dim > 0:
        attrs["slot_dim"] = slot_dim
    if enable_scale_and_shift:
        attrs["enable_scale_and_shift"] = enable_scale_and_shift
    if enable_scale_and_shift:
        inputs["scale_w"] = scale_w
        inputs["bias"] = bias
    helper.append_op(
        type="data_norm",
        inputs=inputs,
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum,
        },
        attrs=attrs,
    )

    return helper.append_activation(data_norm_out)


@templatedoc()
def group_norm(
    input,
    groups,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    data_layout='NCHW',
    name=None,
):
    """
    :api_attr: Static Graph

    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        input(Tensor): Tensor with dimension greater than 1, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        act(str, optional): Activation to be applied to the output of group normalization.
        data_layout(str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, *]`.
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A Tensor has same data type and data format with `input`.

    Examples:
       .. code-block:: python

            import paddle
            paddle.enable_static()

            data = paddle.static.data(name='data', shape=[2, 8, 32, 32], dtype='float32')
            x = paddle.static.nn.group_norm(input=data, groups=4)
            print(x.shape) # [2, 8, 32, 32]
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'group_norm'
    )
    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if len(input_shape) < 2:
        raise ValueError(
            f"The dimensions of Op(static.nn.group_norm)'s input should be more than 1. But received {len(input_shape)}"
        )
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(static.nn.group_norm) got wrong value: received "
            + data_layout
            + " but only NCHW or NHWC supported."
        )
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout,
        },
    )

    return helper.append_activation(group_norm_out)


633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
def conv3d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCDHW",
):
    r"""
    :api_attr: Static Graph

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
            type of input is float16 or float32 or float64.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height,
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
            Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.

    Returns:
        A Variable holding Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor variable storing the
        convolution result, and if act is not None, the tensor variable storing
        convolution and non-linearity activation result.

    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.enable_static()
          data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
          param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001)
          res = paddle.static.nn.conv3d(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr)
          place = paddle.CPUPlace()
          exe = paddle.static.Executor(place)
          exe.run(paddle.static.default_startup_program())
          x = np.random.rand(1, 3, 12, 32, 32).astype("float32")
          output = exe.run(feed={"data": x}, fetch_list=[res])
          print(output)
    """

    l_type = 'conv3d'
    assert param_attr is not False, "param_attr should not be False here."
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    if not isinstance(use_cudnn, bool):
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format)
        )

    channel_last = data_format == "NDHWC"
    if len(input.shape) != 5:
        raise ValueError(
            "Input should be 5D tensor, but received input with the shape of {}".format(
                input.shape
            )
        )
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels))
        )

    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
        raise ValueError(
            "the groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)."
                % (str(num_channels), str(groups))
            )
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0]

    padding = _update_padding(padding, data_format)

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = (
            filter_size[0] * filter_size[1] * filter_size[2] * num_channels
        )
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
                "filter size.".format(filter_elem_num)
            )

        std = (2.0 / filter_elem_num) ** 0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer(),
    )

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )

    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)

    return helper.append_activation(pre_act)


941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
def conv2d_transpose(
    input,
    num_filters,
    output_size=None,
    filter_size=None,
    padding=0,
    stride=1,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format='NCHW',
):
    r"""
    :api_attr: Static Graph

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`,
          conv2d_transpose can compute the kernel size automatically.

    Args:
        input(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_height, image_width). None if use
            filter_size, padding, and stride to calculate output_size.
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size
            should not be None at the same time.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if
            use output size to calculate filter_size. Default: None. filter_size and
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If `padding` is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCHW"`, `padding` can be in the form
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width).
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if
            use output size to calculate filter_size. Default: None.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.

    Returns:
        A Tensor representing the conv2d_transpose, whose
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor
        storing the transposed convolution result, and if act is not None, the
        tensor storing transposed convolution and non-linearity activation
        result.

    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python

          import paddle
          paddle.enable_static()

          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d_transpose = paddle.static.nn.conv2d_transpose(input=data, num_filters=2, filter_size=3)
          print(conv2d_transpose.shape) # [-1, 2, 34, 34]
    """
    assert (
        param_attr is not False
    ), "param_attr should not be False in conv2d_transpose."
    if len(input.shape) != 4:
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(paddle.static.nn.layers.conv2d_transpose) got wrong value: received "
            + data_format
            + " but only NCHW or NHWC supported."
        )

    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
    op_type = 'conv2d_transpose'
    if (
        input_channel == groups
        and num_filters == input_channel
        and not use_cudnn
    ):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

    if output_size is None:
        output_size = []
    elif isinstance(output_size, (list, tuple)):
        if utils._contain_var(output_size):
            output_size = utils._convert_to_tensor_list(output_size)
        else:
            output_size = utils.convert_to_list(output_size, 2, 'output_size')
    elif isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    elif isinstance(output_size, Variable):
        check_dtype(
            output_size.dtype,
            'output_size',
            ['int32', 'int64'],
            'conv2d_transpose',
        )
        if len(output_size.shape) == 1 and (
            output_size.shape[0] == 1 or output_size.shape[0] == 2
        ):
            if output_size.shape[0] == 1:
                output_size = [output_size, output_size]
        else:
            raise ValueError("output_size must contain one or two integers.")
    else:
        raise ValueError(
            "output_size should be int, list[int] or tuple[int] or Tensor"
        )

    if filter_size is None:
        if output_size is []:
            raise ValueError("output_size must be set when filter_size is None")
        if not _non_static_mode():
            if isinstance(output_size, Variable) or utils._contain_var(
                output_size
            ):
                raise ValueError(
                    "filter_size should not be None when output_size is Variable or contain Variable in static mode."
                )
        else:
            output_size = utils.convert_shape_to_list(output_size)
            if len(output_size) == 1:
                output_size = utils.convert_to_list(
                    output_size[0], 2, 'output_size'
                )

        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]

        filter_size_h = (
            output_size[0]
            - (h_in - 1) * stride[0]
            + padding[0]
            + padding[1]
            - 1
        ) // dilation[0] + 1
        filter_size_w = (
            output_size[1]
            - (w_in - 1) * stride[1]
            + padding[2]
            + padding[3]
            - 1
        ) // dilation[1] + 1
        filter_size = [filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(
            filter_size, 2, 'conv2d_transpose.filter_size'
        )

    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

    if groups is None:
        groups = 1
    elif groups <= 0:
        raise ValueError(
            "the groups of input must be greater than 0, "
            "but received the groups of input is {}".format(groups)
        )

    filter_shape = [input_channel, num_filters // groups] + filter_size

    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr
    )

    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'Input': [input], 'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format,
        },
    )

    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
    out = helper.append_activation(pre_act)
    return out


def conv3d_transpose(
    input,
    num_filters,
    output_size=None,
    filter_size=None,
    padding=0,
    stride=1,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format='NCDHW',
):
    r"""
    :api_attr: Static Graph

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \ast X + b)

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
            of input is float32 or float64.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple, optional): The output image size. If output size is a
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are
            specified at the same time, They should follow the formula above. Default: None.
            Output_size and filter_size should not be None at the same time.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height,
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
            calculate filter_size. Default: None. filter_size and output_size should not be
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
            adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
            either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
            is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
            Default: dilation = 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.

    Returns:
        A Variable holding Tensor representing the conv3d_transpose, whose data
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python

          import paddle
          import numpy as np

          paddle.enable_static()
          data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
          param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001)
          res = paddle.static.nn.conv3d_transpose(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr)
          place = paddle.CPUPlace()
          exe = paddle.static.Executor(place)
          exe.run(paddle.static.default_startup_program())
          x = np.random.rand(1, 3, 12, 32, 32).astype("float32")
          output = exe.run(feed={"data": x}, fetch_list=[res])
          print(output)
    """
    assert (
        param_attr is not False
    ), "param_attr should not be False in conv3d_transpose."
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(paddle.static.nn.conv3d_transpose) got wrong value: received "
            + data_format
            + " but only NCDHW or NDHWC supported."
        )

    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv3d_transpose must be Variable")
    if len(input.shape) != 5:
        raise ValueError(
            "Input should be 5D tensor, but received input with the shape of {}".format(
                input.shape
            )
        )
    input_channel = (
        input.shape[1] if data_format == 'NCDHW' else input.shape[-1]
    )

    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding)
                    )
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')

        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0],
                padding[0],
                padding[1],
                padding[1],
                padding[2],
                padding[2],
            ]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size, output_size]

        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]

        filter_size_d = (
            output_size[0]
            - (d_in - 1) * stride[0]
            + padding[0]
            + padding[1]
            - 1
        ) // dilation[0] + 1
        filter_size_h = (
            output_size[1]
            - (h_in - 1) * stride[1]
            + padding[2]
            + padding[3]
            - 1
        ) // dilation[1] + 1
        filter_size_w = (
            output_size[2]
            - (w_in - 1) * stride[2]
            + padding[4]
            + padding[5]
            - 1
        ) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(
            filter_size, 3, 'conv3d_transpose.filter_size'
        )

    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]

    if output_size is None:
        output_size = []
    elif isinstance(output_size, (list, tuple, int)):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
        raise ValueError("output_size should be int, list[int] or tuple[int]")

    groups = 1 if groups is None else groups
    if groups <= 0:
        raise ValueError(
            "the groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
    if num_filters % groups != 0:
        raise ValueError(
            "Attr(num_filters) must be divisible by groups,"
            "Received: Attr(num_filters) is {}, the groups is {}".format(
                num_filters, groups
            )
        )

    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr
    )

    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'

    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=l_type,
        inputs={'Input': [input], 'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format,
        },
    )

    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out


1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
def deformable_conv(
    input,
    offset,
    mask,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    deformable_groups=None,
    im2col_step=None,
    param_attr=None,
    bias_attr=None,
    modulated=True,
    name=None,
):
    r"""

    **Deformable Convolution op**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Tensor): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
        offset (Tensor): The input coordinate offset of deformable convolution layer.
            A Tensor with type float32, float64.
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation;
            The total batch size should be devisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        Tensor: The tensor variable storing the deformable convolution \
                  result. A Tensor with type float32, float64.
    Examples:
        .. code-block:: python

          #deformable conv v2:

              import paddle
              paddle.enable_static()

              C_in, H_in, W_in = 3, 32, 32
              filter_size, deformable_groups = 3, 1
              data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
              offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
              mask = paddle.static.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
              out = paddle.static.layers.common.deformable_conv(input=data, offset=offset, mask=mask,
                                                 num_filters=2, filter_size=filter_size, padding=1, modulated=True)

              #deformable conv v1:

              import paddle
              C_in, H_in, W_in = 3, 32, 32
              filter_size, deformable_groups = 3, 1
              data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
              offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
              out = paddle.static.layers.common.deformable_conv(input=data, offset=offset, mask=None,
                                                 num_filters=2, filter_size=filter_size, padding=1, modulated=False)
    """

    check_variable_and_dtype(
        input, "input", ['float32', 'float64'], 'deformable_conv'
    )
    check_variable_and_dtype(
        offset, "offset", ['float32', 'float64'], 'deformable_conv'
    )
    check_type(
        mask, 'mask', (paddle.static.Variable, type(None)), 'deformable_conv'
    )

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, paddle.static.Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, paddle.static.Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
        return paddle.nn.initializer.normal.NormalInitializer(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer(),
    )

    pre_bias = helper.create_variable_for_type_inference(dtype)

    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            },
        )

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            },
        )

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output


1907
@static_only
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
def deform_conv2d(
    x,
    offset,
    mask,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    deformable_groups=1,
    im2col_step=1,
    weight_attr=None,
    bias_attr=None,
    name=None,
):
1924
    r"""
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:


    Deformable Convolution v2:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}

    Deformable Convolution v1:

    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}

    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.

    Example:
        - Input:

          X shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        x (Tensor): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
        offset (Tensor): The input coordinate offset of deformable convolution layer.
            A Tensor with type float32, float64.
1973
        mask (Tensor, Optional): The input mask of deformable convolution layer.
1974 1975 1976 1977
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
1978
        filter_size (int|list|tuple): The filter size. If filter_size is a list/tuple,
1979 1980
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
1981
        stride (int|list|tuple, Optional): The stride size. If stride is a list/tuple, it must
1982 1983
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
1984
        padding (int|list|tuple, Optional): The padding size. If padding is a list/tuple, it must
1985 1986
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
1987
        dilation (int|list|tuple, Optional): The dilation size. If dilation is a list/tuple, it must
1988 1989
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
1990
        groups (int, Optional): The groups number of the deformable conv layer. According to
1991 1992 1993 1994
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
1995
        deformable_groups (int, Optional): The number of deformable group partitions.
1996
            Default: deformable_groups = 1.
1997
        im2col_step (int, Optional): Maximum number of images per im2col computation;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
            The total batch size should be devisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 1.
        weight_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as weight_attr.
            If the Initializer of the weight_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
        Tensor: The tensor storing the deformable convolution \
                  result. A Tensor with type float32, float64.
2018

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
    Examples:
        .. code-block:: python

          #deformable conv v2:

          import paddle
          paddle.enable_static()

          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
          data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = paddle.static.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          out = paddle.static.nn.deform_conv2d(x=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=filter_size, padding=1)

          #deformable conv v1:

          import paddle
          paddle.enable_static()

          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
          data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          out = paddle.static.nn.deform_conv2d(x=data, offset=offset, mask=None,
                                             num_filters=2, filter_size=filter_size, padding=1)
    """

    if mask is None:
2049
        return deformable_conv(
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
            input=x,
            offset=offset,
            mask=mask,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            deformable_groups=deformable_groups,
            im2col_step=im2col_step,
            param_attr=weight_attr,
            bias_attr=bias_attr,
            modulated=False,
2064 2065
            name=name,
        )
2066
    else:
2067
        return deformable_conv(
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
            input=x,
            offset=offset,
            mask=mask,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            deformable_groups=deformable_groups,
            im2col_step=im2col_step,
            param_attr=weight_attr,
            bias_attr=bias_attr,
            modulated=True,
2082 2083
            name=name,
        )
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189


@static_only
def prelu(x, mode, param_attr=None, data_format="NCHW", name=None):
    r"""

    prelu activation.

    .. math::
        prelu(x) = max(0, x) + \alpha * min(0, x)

    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

    Parameters:
        x (Tensor): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing.
        param_attr (ParamAttr|None, optional): The parameter attribute for the learnable \
            weight (alpha), it can be create by ParamAttr. None by default. \
            For detailed information, please refer to :ref:`api_paddle_ParamAttr`.
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
        name (str, optional): Name for the operation (optional, default is None). \
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A tensor with the same shape and data type as x.

    Examples:

        .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name="x", shape=[None,5,10,10], dtype="float32")
            mode = 'channel'
            output = paddle.static.nn.prelu(
                x,mode,param_attr=paddle.ParamAttr(name='alpha'))

    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')

    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')

    alpha_shape = [1]
    if mode == 'channel':

        true_data_format = [
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

        assert (
            len(x.shape) >= 2
        ), "The size of input shape should be equal or larger than 2 in prelu() when mode is 'channel'"
        # NOTE(zhiqiu): The alpha_shape should be [1, channel] + [1] * len(x.shape[2:]).
        # To be consistent with Prelu, it is simplified.
        # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
        # NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            alpha_shape = [1, 1, 1, x.shape[-1]]
        else:
            alpha_shape = [1, x.shape[1], 1, 1]

    elif mode == 'element':
        assert (
            len(x.shape) >= 1
        ), "The size of input shape should be equal or larger than 1 in prelu() when mode is 'element'"
        alpha_shape = [1] + list(x.shape)[1:]
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=helper.param_attr,
        shape=alpha_shape,
        dtype=dtype,
        is_bias=False,
        default_initializer=paddle.nn.initializer.Constant(0.25),
    )

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x, 'Alpha': alpha},
        attrs={"mode": mode, "data_format": data_format},
        outputs={"Out": out},
    )
    return out