reduce_scatter.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
16
import paddle.distributed as dist
17
from paddle import framework
18 19 20 21
from paddle.distributed.communication.group import (
    _get_global_group,
    _warn_cur_rank_not_in_group,
)
22
from paddle.distributed.communication.reduce import ReduceOp, _get_reduce_op
23
from paddle.fluid import data_feeder
24 25


26 27 28 29 30 31 32 33 34
def _reduce_scatter_tensor_in_dygraph(
    out_tensor,
    in_tensor,
    op,
    group,
    sync_op,
    use_calc_stream,
    caller="reduce_scatter",
):
35 36 37 38
    op_type = _get_reduce_op(op, caller)

    if use_calc_stream:
        return group.process_group.reduce_scatter_tensor_on_calc_stream(
39
            out_tensor, in_tensor, op_type
40
        )
41

42
    task = group.process_group.reduce_scatter_tensor(
43
        out_tensor, in_tensor, op_type, sync_op
44
    )
45 46 47 48 49 50
    if sync_op:
        task.wait()

    return task


51 52 53
def _reduce_scatter_in_dygraph(
    tensor, tensor_list, op, group, sync_op, use_calc_stream
):
54 55 56 57
    op_type = _get_reduce_op(op, "reduce_scatter")

    if use_calc_stream:
        return group.process_group.reduce_scatter_on_calc_stream(
58
            tensor, tensor_list, op_type
59
        )
60

61
    task = group.process_group.reduce_scatter(
62
        tensor, tensor_list, op_type, sync_op
63
    )
64 65 66 67 68 69
    if sync_op:
        task.wait()

    return task


70 71 72 73 74 75 76 77 78 79 80 81 82 83
def _reduce_scatter_in_static_mode(tensor, tensor_or_tensor_list, group):
    op_type = 'reduce_scatter'
    data_feeder.check_variable_and_dtype(
        tensor,
        'tensor',
        [
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'int8',
            'uint8',
            'bool',
84
            'uint16',
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        ],
        op_type,
    )

    helper = framework.LayerHelper(op_type, **locals())
    ring_id = 0 if group is None else group.id
    nranks = dist.get_world_size()

    helper.append_op(
        type=op_type,
        inputs={'x': [tensor_or_tensor_list]},
        outputs={'out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'nranks': nranks,
        },
    )
    return None


105 106 107 108 109 110 111 112
def reduce_scatter(
    tensor,
    tensor_or_tensor_list,
    op=ReduceOp.SUM,
    group=None,
    sync_op=True,
    use_calc_stream=False,
):
113 114 115 116 117 118 119
    """

    Reduce, then scatter a tensor (or a tensor list) across devices.

    Args:
        tensor (Tensor): The output tensor on each rank. The result will overwrite this tenor after communication. Support
            float16, float32, float64, int32, int64, int8, uint8 or bool as the input data type.
120
        tensor_or_tensor_list (Union[Tensor, List[Tensor]]): The input to scatter.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            If it is a tensor, it should be correctly-sized. If it is a list, it should contain correctly-sized tensors.
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The reduction used. If none is given, use ReduceOp.SUM as default.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Warning:
        This API only supports the dygraph mode now.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data1 = paddle.to_tensor([0, 1])
                data2 = paddle.to_tensor([2, 3])
            else:
                data1 = paddle.to_tensor([4, 5])
                data2 = paddle.to_tensor([6, 7])
            dist.stream.reduce_scatter(data1, [data1, data2])
            out = data1.numpy()
            # [4, 6]  (2 GPUs, out for rank 0)
            # [8, 10] (2 GPUs, out for rank 1)
    """
153 154
    if _warn_cur_rank_not_in_group(group):
        return
155 156 157

    if not sync_op and use_calc_stream:
        raise RuntimeError(
158 159
            "use_calc_stream can only be true in sync op behavior."
        )
160 161

    if framework.in_dygraph_mode():
L
LiYuRio 已提交
162
        group = _get_global_group() if group is None else group
163
        if paddle.is_tensor(tensor_or_tensor_list):
164 165 166 167 168 169 170 171
            return _reduce_scatter_tensor_in_dygraph(
                tensor,
                tensor_or_tensor_list,
                op,
                group,
                sync_op,
                use_calc_stream,
            )
172
        else:
173 174 175 176 177 178 179 180
            return _reduce_scatter_in_dygraph(
                tensor,
                tensor_or_tensor_list,
                op,
                group,
                sync_op,
                use_calc_stream,
            )
181 182 183 184 185 186 187
    else:
        assert (
            group is None
        ), "Group can not be used in static graph mode for now."
        return _reduce_scatter_in_static_mode(
            tensor, tensor_or_tensor_list, group
        )
188 189


190 191 192 193 194 195 196 197
def _reduce_scatter_base(
    out_tensor,
    in_tensor,
    op=ReduceOp.SUM,
    group=None,
    sync_op=True,
    use_calc_stream=False,
):
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    """

    Reduce, then scatter a flattened tensor across devices.

    Args:
        out_tensor (Tensor): The output tensor on each rank. The result will overwrite this tenor after communication. Support
            float16, float32, float64, int32 or int64 as the input data type.
        in_tensor (Tensor): The input tensor to reduce and scatter.
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The reduction used. If none is given, use ReduceOp.SUM as default.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Warning:
        This API will be deprecated in the future, and only supports the dygraph mode now.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data1 = paddle.to_tensor([7, 8, 9])
                data2 = paddle.to_tensor([10, 11, 12])
                dist.stream.scatter(data1, src=1)
            else:
                data1 = paddle.to_tensor([1, 2, 3])
                data2 = paddle.to_tensor([4, 5, 6])
                dist.stream.scatter(data1, [data1, data2], src=1)
            out = data1.numpy()
            # [1, 2, 3] (2 GPUs, out for rank 0)
            # [4, 5, 6] (2 GPUs, out for rank 1)
    """
238 239
    if _warn_cur_rank_not_in_group(group):
        return
240 241 242

    if not sync_op and use_calc_stream:
        raise RuntimeError(
243 244
            "use_calc_stream can only be true in sync op behavior."
        )
245 246

    if framework.in_dygraph_mode():
L
LiYuRio 已提交
247
        group = _get_global_group() if group is None else group
248 249 250 251 252 253 254 255 256
        return _reduce_scatter_tensor_in_dygraph(
            out_tensor,
            in_tensor,
            op,
            group,
            sync_op,
            use_calc_stream,
            "_reduce_scatter_base",
        )
257 258 259 260

    raise RuntimeError(
        "paddle.distributed.stream._reduce_scatter_base is only supported in dygraph mode now."
    )