test_RecurrentGradientMachine.cpp 4.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include <gtest/gtest.h>
#include <paddle/utils/Util.h>
#include <paddle/utils/Version.h>
#include <paddle/utils/PythonUtil.h>
#include <paddle/trainer/Trainer.h>
#include <paddle/trainer/TrainerInternal.h>
#include <paddle/gserver/gradientmachines/GradientMachine.h>

24 25
P_DECLARE_int32(seed);

Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
using namespace paddle;  // NOLINT
using namespace std;  // NOLINT
class TrainerForTest : public paddle::Trainer {
public:
  void startTrain() {
    GradientMachine& gm = *this->trainerInternal_.getGradientMachine();
    gm.start(this->getConfig(), dataProvider_);
  }

  void finishTrain() {
    GradientMachine& gm = *this->trainerInternal_.getGradientMachine();
    gm.finish();
  }

  /**
   * Get total dimension of all parameters.
   *
   * @return the total dimension of all parameters
   */
  size_t getTotalParameterSize() const {
    auto p = const_cast<TrainerForTest*>(this);
    auto & params = p->getGradientMachine()->getParameters();
    return std::accumulate(params.begin(), params.end(), 0UL,
                           [](size_t a, const ParameterPtr& p){
      return a+p->getSize();
    });
  }
};

void CalCost(const string& conf, const string& dir, real* cost,
             int num_passes) {
  auto config = std::make_shared<TrainerConfigHelper>(conf);
  TrainerForTest trainer;
  trainer.init(config);
  mkDir(dir.c_str());
  config->setSaveDir(dir);
  auto dataProvider = trainer.getDataProvider();
  int32_t batchSize = config->getOptConfig().batch_size();
  real learningRate = config->getOptConfig().learning_rate();
  real momentum = 0;
  real decayRate = 0;
  int64_t dim = trainer.getTotalParameterSize();
  CpuVector vecW(dim);
  CpuVector vecGradient(dim);
  CpuVector vecMomentum(dim);

  // vecW needs to be assigned, otherwise the variable is an uncertain value.
73 74 75

  *ThreadLocalRand::getSeed() = FLAGS_seed;
  vecW.randnorm(0, 0.1);
76
  vecMomentum.randnorm(0, 0.1);
Z
zhangjinchao01 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

  trainer.startTrain();
  for (int i = 0; i < num_passes; ++i) {
    real totalCost = 0;
    dataProvider->reset();
    while (true) {
      DataBatch dataBatch;
      int num = dataProvider->getNextBatch(batchSize, &dataBatch);
      if (num == 0) break;
      totalCost += trainer.calcGradient(dataBatch, vecW, vecGradient);
      sgdUpdate(learningRate, momentum, decayRate, &vecW, &vecGradient,
                &vecMomentum);
    }
    cost[i] = totalCost;
  }
  trainer.finishTrain();
  rmDir(dir.c_str());
}

96 97 98 99 100
void test(const string& conf1, const string& conf2, double eps, bool useGpu) {
  if (!paddle::version::isWithGpu() && useGpu) {
    return;
  }
  FLAGS_use_gpu = useGpu;
Z
zhangjinchao01 已提交
101 102 103 104 105 106 107 108 109 110 111
  int num_passes = 5;
  real* cost1 = new real[num_passes];
  const string dir1 = "gserver/tests/t1";
  CalCost(conf1, dir1, cost1, num_passes);

  real* cost2 = new real[num_passes];
  const string dir2 = "gserver/tests/t2";
  CalCost(conf2, dir2, cost2, num_passes);

  for (int i = 0; i < num_passes; i++) {
    LOG(INFO) << "num_passes: " << i << ", cost1=" << cost1[i]
112 113 114
              << ", cost2=" << cost2[i]
              << ", diff=" << std::abs(cost1[i] - cost2[i]);
    ASSERT_NEAR(cost1[i], cost2[i], eps);
Z
zhangjinchao01 已提交
115 116 117 118 119
  }
  delete[] cost1;
  delete[] cost2;
}

120
TEST(RecurrentGradientMachine, HasSubSequence) {
121 122 123 124 125
  for (bool useGpu : {false, true}) {
    test("gserver/tests/sequence_layer_group.conf",
         "gserver/tests/sequence_nest_layer_group.conf",
         1e-5, useGpu);
  }
126 127 128
}

TEST(RecurrentGradientMachine, rnn) {
129 130 131 132 133
  for (bool useGpu : {false, true}) {
    test("gserver/tests/sequence_rnn.conf",
         "gserver/tests/sequence_nest_rnn.conf",
         1e-6, useGpu);
  }
134 135
}

136 137 138 139 140 141 142
TEST(RecurrentGradientMachine, rnn_multi_input) {
  for (bool useGpu : {false, true}) {
    test("gserver/tests/sequence_rnn_multi_input.conf",
         "gserver/tests/sequence_nest_rnn_multi_input.conf",
         1e-6, useGpu);
  }
}
143

144 145 146 147 148 149 150 151
TEST(RecurrentGradientMachine, rnn_multi_unequalength_input) {
    for (bool useGpu : {false, true}) {
        test("gserver/tests/sequence_rnn_multi_unequalength_inputs.conf",
        "gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.conf",
             1e-6, useGpu);
    }
}

Z
zhangjinchao01 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
int main(int argc, char** argv) {
  if (paddle::version::isWithPyDataProvider()) {
    if (!paddle::version::isWithGpu()) {
      FLAGS_use_gpu = false;
    }
    initMain(argc, argv);
    initPython(argc, argv);
    testing::InitGoogleTest(&argc, argv);
    return RUN_ALL_TESTS();
  } else {
    return 0;
  }
}