test_digamma_op.py 4.6 KB
Newer Older
Z
zyfncg 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import math
import numpy as np
from scipy.special import psi
import paddle
import paddle.fluid as fluid
import paddle.static as static
from op_test import OpTest
23
from paddle.fluid.framework import _test_eager_guard
Z
zyfncg 已提交
24 25 26 27 28 29 30 31


class TestDigammaOp(OpTest):
    def setUp(self):
        # switch to static
        paddle.enable_static()

        self.op_type = 'digamma'
32
        self.python_api = paddle.digamma
Z
zyfncg 已提交
33 34 35 36 37 38 39 40 41 42 43 44
        self.init_dtype_type()
        shape = (5, 32)
        data = np.random.random(shape).astype(self.dtype) + 1
        self.inputs = {'X': data}
        result = np.ones(shape).astype(self.dtype)
        result = psi(data)
        self.outputs = {'Out': result}

    def init_dtype_type(self):
        self.dtype = np.float64

    def test_check_output(self):
45
        self.check_output(check_eager=True)
Z
zyfncg 已提交
46 47

    def test_check_grad_normal(self):
48
        self.check_grad(['X'], 'Out', check_eager=True)
Z
zyfncg 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98


class TestDigammaOpFp32(TestDigammaOp):
    def init_dtype_type(self):
        self.dtype = np.float32

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


class TestDigammaAPI(unittest.TestCase):
    def setUp(self):
        # switch to static
        paddle.enable_static()
        # prepare test attrs
        self.dtypes = ["float32", "float64"]
        self.places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))
        self._shape = [8, 3, 32, 32]

    def test_in_static_mode(self):
        def init_input_output(dtype):
            input = np.random.random(self._shape).astype(dtype)
            return {'x': input}, psi(input)

        for dtype in self.dtypes:
            input_dict, sc_res = init_input_output(dtype)
            for place in self.places:
                with static.program_guard(static.Program()):
                    x = static.data(name="x", shape=self._shape, dtype=dtype)
                    out = paddle.digamma(x)

                    exe = static.Executor(place)
                    out_value = exe.run(feed=input_dict, fetch_list=[out.name])
                    self.assertEqual(
                        np.allclose(
                            out_value[0], sc_res, rtol=1e-5), True)

    def test_in_dynamic_mode(self):
        for dtype in self.dtypes:
            input = np.random.random(self._shape).astype(dtype)
            sc_res = psi(input)
            for place in self.places:
                # it is more convenient to use `guard` than `enable/disable_**` here
                with fluid.dygraph.guard(place):
                    input_t = paddle.to_tensor(input)
                    res = paddle.digamma(input_t).numpy()
                    self.assertEqual(np.allclose(res, sc_res, rtol=1e-05), True)

99 100 101 102
    def test_in_eager_dynamic_mode(self):
        with _test_eager_guard():
            self.test_in_dynamic_mode()

Z
zyfncg 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def test_name_argument(self):
        with static.program_guard(static.Program()):
            x = static.data(name="x", shape=self._shape, dtype=self.dtypes[0])
            out = paddle.digamma(x, name="digamma_res")
            self.assertTrue("digamma_res" in out.name)

    def test_dtype_error(self):
        # in static mode
        with self.assertRaises(TypeError):
            with static.program_guard(static.Program()):
                x = static.data(name="x", shape=self._shape, dtype="int32")
                out = paddle.digamma(x, name="digamma_res")

        # in dynamic mode
        with self.assertRaises(RuntimeError):
            with fluid.dygraph.guard():
                input = np.random.random(self._shape).astype("int32")
                input_t = paddle.to_tensor(input)
                res = paddle.digamma(input_t)

123 124 125 126 127 128 129
        with self.assertRaises(RuntimeError):
            with fluid.dygraph.guard():
                with _test_eager_guard():
                    input = np.random.random(self._shape).astype("int32")
                    input_t = paddle.to_tensor(input)
                    res = paddle.digamma(input_t)

Z
zyfncg 已提交
130 131 132

if __name__ == "__main__":
    unittest.main()