sparse_blas_impl.cu.h 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/memory/malloc.h"
#include "paddle/phi/backends/dynload/cusparse.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/dense_tensor.h"
23
#include "paddle/phi/core/enforce.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/core/visit_type.h"

namespace phi {
namespace funcs {
namespace sparse {

template <typename T>
cudaDataType_t GetGpuDataType() {
  if (std::is_same<T, float>::value) {
    return CUDA_R_32F;
  } else if (std::is_same<T, double>::value) {
    return CUDA_R_64F;
  } else if (std::is_same<T, phi::dtype::float16>::value) {
    return CUDA_R_16F;
  }
}

inline cusparseOperation_t GetTransposeOperation(const bool trans) {
  if (trans) {
    return CUSPARSE_OPERATION_TRANSPOSE;
  } else {
    return CUSPARSE_OPERATION_NON_TRANSPOSE;
  }
}

51 52
/************* SPARSE MATRIX DESCRIPTOR (COO/CSR) ************/

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
template <typename T, typename IntT>
inline void CreateCsrDescriptor(const phi::SparseCsrTensor& x,
                                const phi::GPUContext& dev_ctx,
                                cusparseSpMatDescr_t* descriptor) {
  std::vector<int64_t> xdim_vec = phi::vectorize(x.dims());
  auto x_ndims = xdim_vec.size();
  PADDLE_ENFORCE_GE(
      x_ndims,
      2,
      phi::errors::InvalidArgument("the dim size of SparseCsrTensor must be "
                                   "greater than or eaqual to 2."));
  int64_t M = xdim_vec[x_ndims - 2];
  int64_t N = xdim_vec[x_ndims - 1];
  int batch_size = 1;
  for (int i = 0; i < x_ndims - 2; i++) {
    batch_size *= xdim_vec[i];
  }
  PADDLE_ENFORCE_EQ(x.non_zero_crows().numel(),
                    batch_size * (M + 1),
                    phi::errors::PreconditionNotMet(
                        "the length of SparseCsrTensor crows is not right."));

  const IntT* crows_data = x.non_zero_crows().data<IntT>();
  const IntT* cols_data = x.non_zero_cols().data<IntT>();
  const T* values_data = x.non_zero_elements().data<T>();

  int64_t batch_nnz = x.nnz() / batch_size;
  cudaDataType_t gpu_type = GetGpuDataType<T>();
  dev_ctx.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseCreateCsr(descriptor,
                                    M,
                                    N,
                                    batch_nnz,
                                    const_cast<IntT*>(crows_data),
                                    const_cast<IntT*>(cols_data),
                                    const_cast<T*>(values_data),
                                    CUSPARSE_INDEX_64I,
                                    CUSPARSE_INDEX_64I,
                                    CUSPARSE_INDEX_BASE_ZERO,
                                    gpu_type);
  });
  if (batch_size > 1) {
#if CUDA_VERSION >= 11070
    dev_ctx.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseCsrSetStridedBatch(
          *descriptor, batch_size, M + 1, batch_nnz);
    });
#else
    PADDLE_THROW(phi::errors::Unimplemented(
        "Batch Sparse matmul use 'cusparseCsrSetStridedBatch', which is "
        "supported from CUDA 11.7"));
#endif
  }
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
template <typename T, typename IntT>
inline void CreateCooDescriptor(const phi::SparseCooTensor& x,
                                const phi::GPUContext& dev_ctx,
                                cusparseSpMatDescr_t* descriptor) {
  std::vector<int64_t> xdim_vec = phi::vectorize(x.dims());
  auto x_ndims = xdim_vec.size();
  PADDLE_ENFORCE_GE(
      x_ndims,
      2,
      phi::errors::InvalidArgument("the dim size of SparseCsrTensor must be "
                                   "greater than or eaqual to 2."));

  int64_t M = xdim_vec[x_ndims - 2];
  int64_t N = xdim_vec[x_ndims - 1];
  int batch_size = 1;
  for (int i = 0; i < x_ndims - 2; i++) {
    batch_size *= xdim_vec[i];
  }
  int64_t nnz = x.nnz();

  const IntT* indices_data = x.non_zero_indices().data<IntT>();
  const T* values_data = x.non_zero_elements().data<T>();
  auto rows_data = indices_data + (x_ndims - 2) * nnz;
  auto cols_data = indices_data + (x_ndims - 1) * nnz;

  int64_t batch_nnz = nnz / batch_size;
  cudaDataType_t gpu_type = GetGpuDataType<T>();
  dev_ctx.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseCreateCoo(descriptor,
                                    M,
                                    N,
                                    batch_nnz,
                                    const_cast<IntT*>(rows_data),
                                    const_cast<IntT*>(cols_data),
                                    const_cast<T*>(values_data),
                                    CUSPARSE_INDEX_64I,
                                    CUSPARSE_INDEX_BASE_ZERO,
                                    gpu_type);
  });

  if (batch_size > 1) {
#if CUDA_VERSION >= 11070
    dev_ctx.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseCooSetStridedBatch(
          *descriptor, batch_size, batch_nnz);
    });
#else
    PADDLE_THROW(phi::errors::Unimplemented(
        "Batch Sparse matmul use 'cusparseCooSetStridedBatch', which is "
        "supported from CUDA 11.7"));
#endif
  }
}

162 163 164 165 166 167 168
template <typename T>
class CuSparseSpMatDescriptor {
 public:
  explicit CuSparseSpMatDescriptor(const phi::SparseCsrTensor& x,
                                   const phi::GPUContext& dev_ctx)
      : dev_ctx_(dev_ctx) {
    PD_VISIT_INTEGRAL_TYPES(
169
        x.non_zero_crows().dtype(), "Csr CuSparseSpMatDescriptor", ([&] {
170
          CreateCsrDescriptor<T, data_t>(x, dev_ctx_, &descriptor_);
171
        }));
172
    VLOG(6) << "Create csr cusparseSpMatDescr_t " << &descriptor_;
173 174
  }

175 176 177 178 179 180 181 182 183 184
  explicit CuSparseSpMatDescriptor(const phi::SparseCooTensor& x,
                                   const phi::GPUContext& dev_ctx)
      : dev_ctx_(dev_ctx) {
    PD_VISIT_INTEGRAL_TYPES(
        x.non_zero_indices().dtype(), "Coo CuSparseSpMatDescriptor", ([&] {
          CreateCooDescriptor<T, data_t>(x, dev_ctx_, &descriptor_);
        }));
    VLOG(6) << "Create coo cusparseSpMatDescr_t " << &descriptor_;
  }

185 186 187 188 189 190 191 192 193 194 195 196 197 198
  ~CuSparseSpMatDescriptor() {
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseDestroySpMat(descriptor_);
    });
    VLOG(6) << "Destroy cusparseSpMatDescr_t " << &descriptor_;
  }

  const cusparseSpMatDescr_t& descriptor() const { return descriptor_; }

 private:
  const phi::GPUContext& dev_ctx_;
  cusparseSpMatDescr_t descriptor_;
};

199
/************* DENSE MATRIX DESCRIPTOR ************/
200 201 202 203 204 205 206 207
template <typename T>
class CuSparseDnMatDescriptor {
 public:
  explicit CuSparseDnMatDescriptor(const phi::DenseTensor& x,
                                   const phi::GPUContext& dev_ctx)
      : dev_ctx_(dev_ctx) {
    std::vector<int64_t> xdim_vec = phi::vectorize(x.dims());
    auto x_ndims = xdim_vec.size();
208 209 210 211 212 213
    PADDLE_ENFORCE_GE(
        x_ndims,
        2,
        phi::errors::InvalidArgument("the dim size of DenseTensor must be "
                                     "greater than or eaqual to 2."));

214 215 216 217 218 219 220
    int64_t M = xdim_vec[x_ndims - 2];
    int64_t N = xdim_vec[x_ndims - 1];
    int batch_size = 1;
    for (int i = 0; i < x_ndims - 2; i++) {
      batch_size *= xdim_vec[i];
    }

221
    const T* x_data = x.data<T>();
222 223 224 225 226 227 228 229 230 231 232 233 234
    cudaDataType_t gpu_type = GetGpuDataType<T>();
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseCreateDnMat(&descriptor_,
                                        M,
                                        N,
                                        N,
                                        const_cast<T*>(x_data),
                                        gpu_type,
                                        CUSPARSE_ORDER_ROW);
    });

    PADDLE_ENFORCE_EQ(x.numel(), batch_size * M * N);
    if (batch_size > 1) {
235
#if CUDA_VERSION >= 11070
236 237 238 239
      dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
        phi::dynload::cusparseDnMatSetStridedBatch(
            descriptor_, batch_size, M * N);
      });
240 241 242 243 244
#else
      PADDLE_THROW(phi::errors::Unimplemented(
          "Batch Sparse matmul use 'cusparseDnMatSetStridedBatch', which is "
          "supported from CUDA 11.7"));
#endif
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    }
    VLOG(6) << "Create cusparseDnMatDescr_t " << &descriptor_;
  }

  ~CuSparseDnMatDescriptor() {
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseDestroyDnMat(descriptor_);
    });
    VLOG(6) << "Destroy cusparseDnMatDescr_t " << &descriptor_;
  }

  const cusparseDnMatDescr_t& descriptor() const { return descriptor_; }

 private:
  const phi::GPUContext& dev_ctx_;
  cusparseDnMatDescr_t descriptor_;
};

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/************* DENSE VECTOR DESCRIPTOR ************/
template <typename T>
class CuSparseDnVecDescriptor {
 public:
  explicit CuSparseDnVecDescriptor(const phi::DenseTensor& x,
                                   const phi::GPUContext& dev_ctx)
      : dev_ctx_(dev_ctx) {
    std::vector<int64_t> xdim_vec = phi::vectorize(x.dims());
    auto x_ndims = xdim_vec.size();
    PADDLE_ENFORCE_GE(x_ndims,
                      1,
                      phi::errors::InvalidArgument(
                          "the dim size of Vec must be eaqual to 1."));

    const T* x_data = x.data<T>();
    cudaDataType_t gpu_type = GetGpuDataType<T>();
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseCreateDnVec(
          &descriptor_, x.numel(), const_cast<T*>(x_data), gpu_type);
    });

    VLOG(6) << "Create cusparseDnVecDescr_t " << &descriptor_;
  }

  ~CuSparseDnVecDescriptor() {
    dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
      phi::dynload::cusparseDestroyDnVec(descriptor_);
    });
    VLOG(6) << "Destroy cusparseDnVecDescr_t " << &descriptor_;
  }

  const cusparseDnVecDescr_t& descriptor() const { return descriptor_; }

 private:
  const phi::GPUContext& dev_ctx_;
  cusparseDnVecDescr_t descriptor_;
};

301
/************* SPARSE*DENSE->DENSE MATMUL ************/
302
template <>
303 304 305 306 307 308 309 310
template <typename T, typename TensorType>
void SparseBlas<phi::GPUContext>::SPMM(bool transa,
                                       bool transb,
                                       T alpha,
                                       const TensorType& mat_a,
                                       const phi::DenseTensor& mat_b,
                                       T beta,
                                       phi::DenseTensor* mat_out) const {
311 312
  auto a_descriptor = CuSparseSpMatDescriptor<T>(mat_a, dev_ctx_);
  auto b_descriptor = CuSparseDnMatDescriptor<T>(mat_b, dev_ctx_);
313
  auto out_descriptor = CuSparseDnMatDescriptor<T>(*mat_out, dev_ctx_);
314

315
  cudaDataType_t gpu_type = GetGpuDataType<T>();
316 317 318 319 320 321 322 323 324
  size_t buffer_size = 0;
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSpMM_bufferSize(handle,
                                          GetTransposeOperation(transa),
                                          GetTransposeOperation(transb),
                                          &alpha,
                                          a_descriptor.descriptor(),
                                          b_descriptor.descriptor(),
                                          &beta,
325
                                          out_descriptor.descriptor(),
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
                                          gpu_type,
                                          CUSPARSE_SPMM_ALG_DEFAULT,
                                          &buffer_size);
  });

  paddle::memory::allocation::AllocationPtr tmp_buffer =
      paddle::memory::Alloc(dev_ctx_, buffer_size);
  void* tmp_buffer_ptr = tmp_buffer->ptr();
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSpMM(handle,
                               GetTransposeOperation(transa),
                               GetTransposeOperation(transb),
                               &alpha,
                               a_descriptor.descriptor(),
                               b_descriptor.descriptor(),
                               &beta,
342
                               out_descriptor.descriptor(),
343 344 345 346 347 348
                               gpu_type,
                               CUSPARSE_SPMM_ALG_DEFAULT,
                               tmp_buffer_ptr);
  });
}

349
/************* SPARSE*DENSE->DENSE MV ************/
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
template <>
template <typename T, typename TensorType>
void SparseBlas<phi::GPUContext>::SPMV(bool transa,
                                       T alpha,
                                       const TensorType& mat_a,
                                       const phi::DenseTensor& vec_x,
                                       T beta,
                                       phi::DenseTensor* vec_out) const {
  auto a_descriptor = CuSparseSpMatDescriptor<T>(mat_a, dev_ctx_);
  auto x_descriptor = CuSparseDnVecDescriptor<T>(vec_x, dev_ctx_);
  auto out_descriptor = CuSparseDnVecDescriptor<T>(*vec_out, dev_ctx_);

  cudaDataType_t gpu_type = GetGpuDataType<T>();
  size_t buffer_size = 0;
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSpMV_bufferSize(handle,
                                          GetTransposeOperation(transa),
                                          &alpha,
                                          a_descriptor.descriptor(),
                                          x_descriptor.descriptor(),
                                          &beta,
                                          out_descriptor.descriptor(),
                                          gpu_type,
                                          CUSPARSE_MV_ALG_DEFAULT,
                                          &buffer_size);
  });

  paddle::memory::allocation::AllocationPtr tmp_buffer =
      paddle::memory::Alloc(dev_ctx_, buffer_size);
  void* tmp_buffer_ptr = tmp_buffer->ptr();
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSpMV(handle,
                               GetTransposeOperation(transa),
                               &alpha,
                               a_descriptor.descriptor(),
                               x_descriptor.descriptor(),
                               &beta,
                               out_descriptor.descriptor(),
                               gpu_type,
                               CUSPARSE_MV_ALG_DEFAULT,
                               tmp_buffer_ptr);
  });
}

394
/************* DENSE*DENSE->SPARSE MATMUL ************/
395 396
#if CUDA_VERSION >= 11030
template <>
397
template <typename T, typename TensorType>
398 399 400 401 402 403
void SparseBlas<phi::GPUContext>::SDDMM(bool transa,
                                        bool transb,
                                        T alpha,
                                        const phi::DenseTensor& mat_a,
                                        const phi::DenseTensor& mat_b,
                                        T beta,
404
                                        TensorType* mat_out) const {
405 406
  auto a_descriptor = CuSparseDnMatDescriptor<T>(mat_a, dev_ctx_);
  auto b_descriptor = CuSparseDnMatDescriptor<T>(mat_b, dev_ctx_);
407
  auto out_descriptor = CuSparseSpMatDescriptor<T>(*mat_out, dev_ctx_);
408

409
  cudaDataType_t gpu_type = GetGpuDataType<T>();
410 411 412 413 414 415 416 417 418
  size_t buffer_size = 0;
  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSDDMM_bufferSize(handle,
                                           GetTransposeOperation(transa),
                                           GetTransposeOperation(transb),
                                           &alpha,
                                           a_descriptor.descriptor(),
                                           b_descriptor.descriptor(),
                                           &beta,
419
                                           out_descriptor.descriptor(),
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
                                           gpu_type,
                                           CUSPARSE_SDDMM_ALG_DEFAULT,
                                           &buffer_size);
  });

  paddle::memory::allocation::AllocationPtr tmp_buffer =
      paddle::memory::Alloc(dev_ctx_, buffer_size);
  void* tmp_buffer_ptr = tmp_buffer->ptr();

  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSDDMM_preprocess(handle,
                                           GetTransposeOperation(transa),
                                           GetTransposeOperation(transb),
                                           &alpha,
                                           a_descriptor.descriptor(),
                                           b_descriptor.descriptor(),
                                           &beta,
437
                                           out_descriptor.descriptor(),
438 439 440 441 442 443 444 445 446 447 448 449 450
                                           gpu_type,
                                           CUSPARSE_SDDMM_ALG_DEFAULT,
                                           tmp_buffer_ptr);
  });

  dev_ctx_.CusparseCall([&](cusparseHandle_t handle) {
    phi::dynload::cusparseSDDMM(handle,
                                GetTransposeOperation(transa),
                                GetTransposeOperation(transb),
                                &alpha,
                                a_descriptor.descriptor(),
                                b_descriptor.descriptor(),
                                &beta,
451
                                out_descriptor.descriptor(),
452 453 454 455 456 457 458 459 460 461
                                gpu_type,
                                CUSPARSE_SDDMM_ALG_DEFAULT,
                                tmp_buffer_ptr);
  });
}
#endif

}  // namespace sparse
}  // namespace funcs
}  // namespace phi