mean_op.cu 4.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liaogang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
L
liaogang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#ifdef __NVCC__
W
wangchaochaohu 已提交
15
#include "cub/cub.cuh"
16 17 18 19 20
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/mean_op.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
C
chengduo 已提交
23
#include "paddle/fluid/platform/float16.h"
L
liaogang 已提交
24

W
wangchaochaohu 已提交
25 26 27
namespace paddle {
namespace operators {

28 29 30 31 32 33 34 35 36 37 38
template <typename T>
struct DivideFunctor {
  HOSTDEVICE explicit inline DivideFunctor(int n)
      : n_inv(static_cast<T>(1.0 / n)) {}

  HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; }

 private:
  T n_inv;
};

W
wangchaochaohu 已提交
39
template <typename T>
40
__global__ void MeanRunKernel(const T* in_data, T* out_data, int N) {
W
wangchaochaohu 已提交
41
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
42
  T data = in_data[0];
W
wangchaochaohu 已提交
43
  for (; idx < N; idx += blockDim.x * gridDim.x) {
44
    out_data[idx] = data / (static_cast<T>(N));
W
wangchaochaohu 已提交
45 46 47
  }
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
template <typename DeviceContext, typename T>
class MeanCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");

    output->mutable_data<T>(context.GetPlace());
    auto size_prob = input->numel();
    const T* in_data = input->data<T>();
    T* out_data = output->mutable_data<T>(context.GetPlace());
    auto stream = context.cuda_device_context().stream();

    DivideFunctor<T> transformer(size_prob);
    cub::TransformInputIterator<T, DivideFunctor<T>, const T*> trans_x(
        in_data, transformer);
    size_t temp_storage_bytes = 0;

    auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes, trans_x,
                                      out_data, size_prob, stream);
68
    PADDLE_ENFORCE_GPU_SUCCESS(err);
69 70 71 72 73 74
    framework::Tensor tmp;
    auto* temp_storage = tmp.mutable_data<uint8_t>(
        framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
        context.GetPlace());
    err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes, trans_x,
                                 out_data, size_prob, stream);
75
    PADDLE_ENFORCE_GPU_SUCCESS(err);
76 77 78
  }
};

W
wangchaochaohu 已提交
79 80 81 82 83
template <typename DeviceContext, typename T>
class MeanCUDAGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
84 85 86 87 88
    PADDLE_ENFORCE_EQ(OG->numel(), 1,
                      platform::errors::InvalidArgument(
                          "Mean Gradient Input Tensor len should be 1. But "
                          "received Out@Grad's elements num is %d.",
                          OG->numel()));
W
wangchaochaohu 已提交
89 90 91
    auto IG = context.Output<Tensor>(framework::GradVarName("X"));
    IG->mutable_data<T>(context.GetPlace());

92
    auto in_data = OG->data<T>();
W
wangchaochaohu 已提交
93 94 95 96 97 98 99 100 101 102 103 104
    auto size_prob = IG->numel();
    auto out_data = IG->data<T>();
    int threads = 512;
    int grid = (size_prob + threads - 1) / threads;
    auto stream = context.cuda_device_context().stream();
    MeanRunKernel<T><<<grid, threads, 0, stream>>>(in_data, out_data,
                                                   size_prob);
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
105
namespace ops = paddle::operators;
C
chengduo 已提交
106
namespace plat = paddle::platform;
Q
QI JUN 已提交
107
REGISTER_OP_CUDA_KERNEL(
108 109 110
    mean, ops::MeanCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MeanCUDAKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MeanCUDAKernel<paddle::platform::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
111
REGISTER_OP_CUDA_KERNEL(
112 113 114 115 116
    mean_grad,
    ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MeanCUDAGradKernel<paddle::platform::CUDADeviceContext,
                            plat::float16>);