pool_kernel_impl.h 11.7 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
18

F
From00 已提交
19 20
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/pooling.h"
21
#include "paddle/phi/kernels/pool_kernel.h"
F
From00 已提交
22 23 24 25 26 27 28 29 30 31

#if defined(__HIPCC__) || defined(__NVCC__)
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
#endif

namespace phi {

inline int GetReduceNum(const DenseTensor& input,
                        const DenseTensor* output,
32
                        const bool channel_last,
F
From00 已提交
33 34
                        std::vector<int>* reduce_dim) {
  int reduce_num = 0;
35 36 37
  const int output_height =
      channel_last ? output->dims()[1] : output->dims()[2];
  const int output_width = channel_last ? output->dims()[2] : output->dims()[3];
F
From00 已提交
38
  if ((output_height == 1) && (output_width == 1)) {
39 40 41 42 43 44 45 46 47
    if (channel_last) {
      reduce_dim->push_back(1);
      reduce_dim->push_back(2);
      reduce_num = input.dims()[1] * input.dims()[2];
    } else {
      reduce_dim->push_back(2);
      reduce_dim->push_back(3);
      reduce_num = input.dims()[2] * input.dims()[3];
    }
F
From00 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  }
  return reduce_num;
}

template <typename T, typename Context>
void PoolRawKernel(const Context& ctx,
                   const DenseTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   DenseTensor* out) {
  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
  std::vector<int> paddings_ = paddings;
  std::vector<int> kernel_size_ = kernel_size;

  // update paddings
  auto x_dims = x.dims();
  DDim data_dims;
  if (channel_last) {
    data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1);
  } else {
    data_dims = slice_ddim(x_dims, 2, x_dims.size());
  }

  funcs::UpdatePadding(&paddings_,
                       global_pooling,
                       adaptive,
                       padding_algorithm,
                       data_dims,
                       strides,
                       kernel_size_);

  if (data_dims.size() * 2 == static_cast<int>(paddings_.size())) {
    for (int i = 0; i < data_dims.size(); ++i) {
      paddings_.erase(paddings_.begin() + i + 1);
    }
  }

  if (global_pooling) {
    funcs::UpdateKernelSize(&kernel_size_, data_dims);
  }

  switch (kernel_size_.size()) {
    case 2: {
      if (pooling_type == "max") {
        funcs::Pool2dFunctor<Context, funcs::MaxPool<T>, T> pool2d_forward;
        funcs::MaxPool<T> pool_process;
        pool2d_forward(ctx,
                       x,
                       kernel_size_,
                       strides,
                       paddings_,
                       data_format,
                       true,
                       false,
                       out,
                       pool_process);

      } else if (pooling_type == "avg") {
        std::vector<int> reduce_dim;
114
        int reduce_num = GetReduceNum(x, out, channel_last, &reduce_dim);
F
From00 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        if (reduce_num > 0 &&
            adaptive) {  // for adaptive_avg_pool2d && output_size == 1
#if defined(__HIPCC__) || defined(__NVCC__)
          auto stream = ctx.stream();
          funcs::ReduceKernel<T, T, kps::AddFunctor, kps::DivideFunctor<T>>(
              ctx, x, out, kps::DivideFunctor<T>(reduce_num), reduce_dim);
#else  // for cpu
          funcs::Pool2dFunctor<Context, funcs::AvgPool<T>, T> pool2d_forward;
          funcs::AvgPool<T> pool_process;
          pool2d_forward(ctx,
                         x,
                         kernel_size_,
                         strides,
                         paddings_,
                         data_format,
                         exclusive,
                         adaptive,
                         out,
                         pool_process);
#endif
        } else {  // avgpool_2d or  adaptive_avg_pool2d && output_size != 1
          funcs::Pool2dFunctor<Context, funcs::AvgPool<T>, T> pool2d_forward;
          funcs::AvgPool<T> pool_process;
          pool2d_forward(ctx,
                         x,
                         kernel_size_,
                         strides,
                         paddings_,
                         data_format,
                         exclusive,
                         adaptive,
                         out,
                         pool_process);
        }
      }
    } break;
    case 3: {
      if (pooling_type == "max") {
        funcs::Pool3dFunctor<Context, funcs::MaxPool<T>, T> pool3d_forward;
        funcs::MaxPool<T> pool_process;
        pool3d_forward(ctx,
                       x,
                       kernel_size_,
                       strides,
                       paddings_,
                       data_format,
                       true,
                       false,
                       out,
                       pool_process);
      } else if (pooling_type == "avg") {
        funcs::Pool3dFunctor<Context, funcs::AvgPool<T>, T> pool3d_forward;
        funcs::AvgPool<T> pool_process;
        pool3d_forward(ctx,
                       x,
                       kernel_size_,
                       strides,
                       paddings_,
                       data_format,
                       exclusive,
                       adaptive,
                       out,
                       pool_process);
      }
    } break;
    default: {
      PADDLE_THROW(
          errors::InvalidArgument("Pool op only supports 2D and 3D input."));
    }
  }
}

template <typename Context, typename T1, typename T2 = int>
void MaxPoolWithIndexRawKernel(const Context& ctx,
                               const DenseTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               DenseTensor* out,
                               DenseTensor* mask) {
  std::vector<int> paddings_ = paddings;
  std::vector<int> kernel_size_ = kernel_size;

  if (global_pooling) {
    for (size_t i = 0; i < kernel_size_.size(); ++i) {
      paddings_[i] = 0;
      kernel_size_[i] = static_cast<int>(x.dims()[i + 2]);
    }
  }

  switch (kernel_size_.size()) {
    case 2: {
      funcs::MaxPool2dWithIndexFunctor<Context, T1, T2> pool2d_forward;
      pool2d_forward(
          ctx, x, kernel_size_, strides, paddings_, adaptive, out, mask);
    } break;
    case 3: {
      funcs::MaxPool3dWithIndexFunctor<Context, T1, T2> pool3d_forward;
      pool3d_forward(
          ctx, x, kernel_size_, strides, paddings_, adaptive, out, mask);
    } break;
    default: {
      PADDLE_THROW(
          errors::InvalidArgument("Pool op only supports 2D and 3D input."));
    }
  }
}

template <typename T, typename Context>
void Pool2dKernel(const Context& ctx,
                  const DenseTensor& x,
228
                  const IntArray& kernel_size,
F
From00 已提交
229 230
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
G
Galaxy1458 已提交
231
                  bool ceil_mode UNUSED,
F
From00 已提交
232 233 234 235 236 237 238
                  bool exclusive,
                  const std::string& data_format,
                  const std::string& pooling_type,
                  bool global_pooling,
                  bool adaptive,
                  const std::string& padding_algorithm,
                  DenseTensor* out) {
239 240
  std::vector<int> kernel_size_val(kernel_size.GetData().begin(),
                                   kernel_size.GetData().end());
F
From00 已提交
241 242
  PoolRawKernel<T, Context>(ctx,
                            x,
243
                            kernel_size_val,
F
From00 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
                            strides,
                            paddings,
                            exclusive,
                            data_format,
                            pooling_type,
                            global_pooling,
                            adaptive,
                            padding_algorithm,
                            out);
}

template <typename T, typename Context>
void MaxPool2dWithIndexKernel(const Context& ctx,
                              const DenseTensor& x,
                              const std::vector<int>& kernel_size,
                              const std::vector<int>& strides,
                              const std::vector<int>& paddings,
                              bool global_pooling,
                              bool adaptive,
                              DenseTensor* out,
                              DenseTensor* mask) {
  MaxPoolWithIndexRawKernel<Context, T>(ctx,
                                        x,
                                        kernel_size,
                                        strides,
                                        paddings,
                                        global_pooling,
                                        adaptive,
                                        out,
                                        mask);
}

template <typename T, typename Context>
void Pool3dKernel(const Context& ctx,
                  const DenseTensor& x,
                  const std::vector<int>& kernel_size,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
G
Galaxy1458 已提交
282
                  bool ceil_mode UNUSED,
F
From00 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
                  bool exclusive,
                  const std::string& data_format,
                  const std::string& pooling_type,
                  bool global_pooling,
                  bool adaptive,
                  const std::string& padding_algorithm,
                  DenseTensor* out) {
  PoolRawKernel<T, Context>(ctx,
                            x,
                            kernel_size,
                            strides,
                            paddings,
                            exclusive,
                            data_format,
                            pooling_type,
                            global_pooling,
                            adaptive,
                            padding_algorithm,
                            out);
}

template <typename T, typename Context>
void MaxPool3dWithIndexKernel(const Context& ctx,
                              const DenseTensor& x,
                              const std::vector<int>& kernel_size,
                              const std::vector<int>& strides,
                              const std::vector<int>& paddings,
                              bool global_pooling,
                              bool adaptive,
                              DenseTensor* out,
                              DenseTensor* mask) {
  MaxPoolWithIndexRawKernel<Context, T>(ctx,
                                        x,
                                        kernel_size,
                                        strides,
                                        paddings,
                                        global_pooling,
                                        adaptive,
                                        out,
                                        mask);
}

}  // namespace phi