RecurrentLayerGroup.cpp 3.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <functional>
Y
Yu Yang 已提交
16
#include "paddle/gserver/layers/Layer.h"
Z
zhangjinchao01 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

#include "paddle/gserver/gradientmachines/RecurrentGradientMachine.h"
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * Recurrent layer group is a group of layers, which forward/backward one frame
 * after previous frame forward/backward through all layers in layer group.
 * It's automatically added by config_parser if some layers are defined
 * between RecurrentLayerGroupBegin and RecurrentLayerGroupEnd.
 */
class RecurrentLayerGroup : public Layer {
public:
  explicit RecurrentLayerGroup(const LayerConfig& config) : Layer(config) {}

33 34
  void initSubNetwork(NeuralNetwork* rootNetwork,
                      const ModelConfig& config,
Z
zhangjinchao01 已提交
35
                      const std::vector<ParameterType>& parameterTypes,
Y
Yu Yang 已提交
36
                      bool useGpu) override;
Z
zhangjinchao01 已提交
37

Y
Yu Yang 已提交
38
  void forward(PassType passType) override {
Z
zhangjinchao01 已提交
39 40 41 42 43
    REGISTER_TIMER_INFO("RecurrentGroupFwTime", getName().c_str());
    const std::vector<Argument> inArgs;
    std::vector<Argument> outArgs;
    network_->forward(inArgs, &outArgs, passType);
  }
Y
Yu Yang 已提交
44
  void backward(const UpdateCallback& callback) override {
Z
zhangjinchao01 已提交
45 46 47 48 49 50 51 52 53 54 55
    REGISTER_TIMER_INFO("RecurrentGroupBwTime", getName().c_str());
    network_->backward(nullptr);

    for (auto& para : parameters_) {
      para->incUpdate(callback);
    }
  }

  /**
   * @see Layer.accessSubNetwork
   */
Y
Yu Yang 已提交
56 57
  void accessSubNetwork(
      const std::function<void(NeuralNetwork&)>& callback) override {
Z
zhangjinchao01 已提交
58 59 60 61 62 63 64 65 66 67
    callback(*network_);
  }

private:
  std::unique_ptr<RecurrentGradientMachine> network_;
};

REGISTER_LAYER(recurrent_layer_group, RecurrentLayerGroup);

void RecurrentLayerGroup::initSubNetwork(
68 69 70 71
    NeuralNetwork* rootNetwork,
    const ModelConfig& config,
    const std::vector<ParameterType>& parameterTypes,
    bool useGpu) {
Z
zhangjinchao01 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  setNeedGradient(true);

  network_.reset(new RecurrentGradientMachine(config_.name(), rootNetwork));
  ParamInitCallback cb = [this, rootNetwork](int paramId, Parameter* para) {
    para->enableSharedType(
        PARAMETER_VALUE,
        rootNetwork->getParameters()[paramId]->getBuf(PARAMETER_VALUE),
        rootNetwork->getParameters()[paramId]->getMat(PARAMETER_VALUE));
    para->enableSharedType(
        PARAMETER_GRADIENT,
        rootNetwork->getParameters()[paramId]->getBuf(PARAMETER_GRADIENT),
        rootNetwork->getParameters()[paramId]->getMat(PARAMETER_GRADIENT));
  };
  network_->init(config, cb, parameterTypes, useGpu);

  for (auto paramId : network_->getParameterIds()) {
    ParameterPtr parameter = rootNetwork->getParameters()[paramId];
    parameter->incShared();
    CHECK_EQ(parameter->getDeviceId(), getDeviceId());
    parameters_.push_back(parameter);
  }
}

}  // namespace paddle