box_coder_op.h 6.4 KB
Newer Older
G
gaoyuan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
13 14
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
G
gaoyuan 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };

inline BoxCodeType GetBoxCodeType(const std::string& type) {
  if (type == "encode_center_size") {
    return BoxCodeType::kEncodeCenterSize;
  } else if (type == "decode_center_size") {
    return BoxCodeType::kDecodeCenterSize;
  }
  PADDLE_THROW("Not support type %s.", type);
}

template <typename T>
class BoxCoderKernel : public framework::OpKernel<T> {
 public:
G
gaoyuan 已提交
33 34 35 36
  void EncodeCenterSize(const framework::Tensor& target_box,
                        const framework::Tensor& prior_box,
                        const framework::Tensor& prior_box_var,
                        T* output) const {
G
gaoyuan 已提交
37 38
    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];
G
gaoyuan 已提交
39
    int64_t len = prior_box.dims()[1];
G
gaoyuan 已提交
40 41 42 43 44 45
    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
G
gaoyuan 已提交
46 47
        T prior_box_width =
            prior_box_data[j * len + 2] - prior_box_data[j * len];
G
gaoyuan 已提交
48
        T prior_box_height =
G
gaoyuan 已提交
49
            prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
G
gaoyuan 已提交
50
        T prior_box_center_x =
G
gaoyuan 已提交
51
            (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
G
gaoyuan 已提交
52
        T prior_box_center_y =
G
gaoyuan 已提交
53
            (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
G
gaoyuan 已提交
54 55

        T target_box_center_x =
G
gaoyuan 已提交
56
            (target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
G
gaoyuan 已提交
57
        T target_box_center_y =
G
gaoyuan 已提交
58
            (target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
G
gaoyuan 已提交
59
        T target_box_width =
G
gaoyuan 已提交
60
            target_box_data[i * len + 2] - target_box_data[i * len];
G
gaoyuan 已提交
61
        T target_box_height =
G
gaoyuan 已提交
62
            target_box_data[i * len + 3] - target_box_data[i * len + 1];
G
gaoyuan 已提交
63

G
gaoyuan 已提交
64
        size_t offset = i * col * len + j * len;
G
gaoyuan 已提交
65
        output[offset] = (target_box_center_x - prior_box_center_x) /
G
gaoyuan 已提交
66
                         prior_box_width / prior_box_var_data[j * len];
G
gaoyuan 已提交
67
        output[offset + 1] = (target_box_center_y - prior_box_center_y) /
G
gaoyuan 已提交
68
                             prior_box_height / prior_box_var_data[j * len + 1];
G
gaoyuan 已提交
69 70
        output[offset + 2] =
            std::log(std::fabs(target_box_width / prior_box_width)) /
G
gaoyuan 已提交
71
            prior_box_var_data[j * len + 2];
G
gaoyuan 已提交
72 73
        output[offset + 3] =
            std::log(std::fabs(target_box_height / prior_box_height)) /
G
gaoyuan 已提交
74
            prior_box_var_data[j * len + 3];
G
gaoyuan 已提交
75 76 77
      }
    }
  }
G
gaoyuan 已提交
78 79 80 81
  void DecodeCenterSize(const framework::Tensor& target_box,
                        const framework::Tensor& prior_box,
                        const framework::Tensor& prior_box_var,
                        T* output) const {
G
gaoyuan 已提交
82 83
    int64_t row = target_box.dims()[0];
    int64_t col = prior_box.dims()[0];
G
gaoyuan 已提交
84
    int64_t len = prior_box.dims()[1];
G
gaoyuan 已提交
85 86 87 88 89 90 91

    auto* target_box_data = target_box.data<T>();
    auto* prior_box_data = prior_box.data<T>();
    auto* prior_box_var_data = prior_box_var.data<T>();

    for (int64_t i = 0; i < row; ++i) {
      for (int64_t j = 0; j < col; ++j) {
G
gaoyuan 已提交
92 93
        T prior_box_width =
            prior_box_data[j * len + 2] - prior_box_data[j * len];
G
gaoyuan 已提交
94
        T prior_box_height =
G
gaoyuan 已提交
95
            prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
G
gaoyuan 已提交
96
        T prior_box_center_x =
G
gaoyuan 已提交
97
            (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
G
gaoyuan 已提交
98
        T prior_box_center_y =
G
gaoyuan 已提交
99
            (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
G
gaoyuan 已提交
100

G
gaoyuan 已提交
101 102
        T target_box_center_x = prior_box_var_data[j * len] *
                                    target_box_data[i * len] * prior_box_width +
G
gaoyuan 已提交
103
                                prior_box_center_x;
G
gaoyuan 已提交
104 105
        T target_box_center_y = prior_box_var_data[j * len + 1] *
                                    target_box_data[i * len + 1] *
G
gaoyuan 已提交
106 107
                                    prior_box_height +
                                prior_box_center_y;
G
gaoyuan 已提交
108 109
        T target_box_width = std::exp(prior_box_var_data[j * len + 2] *
                                      target_box_data[i * len + 2]) *
G
gaoyuan 已提交
110
                             prior_box_width;
G
gaoyuan 已提交
111 112
        T target_box_height = std::exp(prior_box_var_data[j * len + 3] *
                                       target_box_data[i * len + 3]) *
G
gaoyuan 已提交
113 114
                              prior_box_height;

G
gaoyuan 已提交
115
        size_t offset = i * col * len + j * len;
G
gaoyuan 已提交
116 117 118 119 120 121 122 123 124 125 126 127
        output[offset] = target_box_center_x - target_box_width / 2;
        output[offset + 1] = target_box_center_y - target_box_height / 2;
        output[offset + 2] = target_box_center_x + target_box_width / 2;
        output[offset + 3] = target_box_center_y + target_box_height / 2;
      }
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
G
gaoyuan 已提交
128
    auto* output_box = context.Output<framework::Tensor>("OutputBox");
G
gaoyuan 已提交
129 130 131 132 133 134 135

    if (target_box->lod().size()) {
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
G
gaoyuan 已提交
136
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
137

G
gaoyuan 已提交
138
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151

    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
    T* output = output_box->data<T>();
    if (code_type == BoxCodeType::kEncodeCenterSize) {
      EncodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      DecodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
    }
  }
};

}  // namespace operators
}  // namespace paddle