psroi_pool_grad_kernel.cc 5.3 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/psroi_pool_grad_kernel.h"

#include <algorithm>
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T, typename Context>
void PsroiPoolGradKernel(const Context& ctx,
                         const DenseTensor& x,
                         const DenseTensor& rois,
                         paddle::optional<const DenseTensor&> rois_num,
                         const DenseTensor& dout,
                         int pooled_height,
                         int pooled_width,
                         int output_channels,
                         float spatial_scale,
                         DenseTensor* dx) {
  if (dx) {
    auto in_dims = x.dims();
    int input_channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num_t = rois.dims()[0];

    // set roi batch id
    DenseTensor rois_batch_id_list;
    rois_batch_id_list.Resize({rois_num_t});
    int* rois_batch_id_data = ctx.template Alloc<int>(&rois_batch_id_list);
    int rois_batch_size;
    if (rois_num.get_ptr()) {
      rois_batch_size = rois_num->numel();
      auto* rois_num_t_data = rois_num->data<int>();
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_t_data[n]; ++i) {
          rois_batch_id_data[i] = n;
        }
        start += rois_num_t_data[n];
      }
    } else {
      auto rois_lod = rois.lod().back();
      rois_batch_size = rois_lod.size() - 1;
      // calculate batch id index for each roi according to LoD
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          rois_batch_id_data[i] = n;
        }
      }
    }
    const T* input_rois = rois.data<T>();
    const T* dout_data = dout.data<T>();
    T* dx_data = ctx.template Alloc<T>(dx);

    // set gradient of X to be 0. before backpropagate.
    funcs::SetConstant<Context, T> set_zero;
    set_zero(ctx, dx, static_cast<T>(0));

    // backpropagate gradient per output pixel
    int dout_size = dout.numel();
    for (int i = 0; i < dout_size; ++i) {
      // The output is in order (n, c, ph, pw)
      int pw = i % pooled_width;
      int ph = (i / pooled_width) % pooled_height;
      int c = (i / pooled_width / pooled_height) % output_channels;
      int n = i / pooled_width / pooled_height / output_channels;

      // set roi_batch_id
      int roi_batch_id = rois_batch_id_data[n];
      int input_channel = (c * pooled_height + ph) * pooled_width + pw;
      int input_offset =
          (roi_batch_id * input_channels + input_channel) * height * width;
      T* offset_dx_data = dx_data + input_offset;

      // [start, end) interval for spatial sampling
      const T* offset_input_rois = input_rois + n * 4;
      T roi_start_w =
          static_cast<T>(round(offset_input_rois[0])) * spatial_scale;
      T roi_start_h =
          static_cast<T>(round(offset_input_rois[1])) * spatial_scale;
      T roi_end_w =
          static_cast<T>(round(offset_input_rois[2]) + 1.) * spatial_scale;
      T roi_end_h =
          static_cast<T>(round(offset_input_rois[3]) + 1.) * spatial_scale;

      // Force too small ROIs to be 1x1
      T roi_height = std::max(roi_end_h - roi_start_h, (T)0.1);  // avoid 0
      T roi_width = std::max(roi_end_w - roi_start_w, (T)0.1);

      // Compute w and h at input feature map
      T bin_size_h = roi_height / static_cast<T>(pooled_height);
      T bin_size_w = roi_width / static_cast<T>(pooled_width);

      int hstart = floor(bin_size_h * static_cast<T>(ph) + roi_start_h);
      int wstart = floor(bin_size_w * static_cast<T>(pw) + roi_start_w);
      int hend = ceil(bin_size_h * static_cast<T>(ph + 1) + roi_start_h);
      int wend = ceil(bin_size_w * static_cast<T>(pw + 1) + roi_start_w);

      // Add roi offsets and clip to input boundaries
      hstart = std::min(std::max(hstart, 0), height);
      hend = std::min(std::max(hend, 0), height);
      wstart = std::min(std::max(wstart, 0), width);
      wend = std::min(std::max(wend, 0), width);
      bool is_empty = (hend <= hstart) || (wend <= wstart);

      // Accumulate diff_val into input data
      T bin_area = static_cast<T>((hend - hstart) * (wend - wstart));
      T diff_val = is_empty ? 0. : dout_data[i] / bin_area;
      for (int ih = hstart; ih < hend; ++ih) {
        for (int iw = wstart; iw < wend; ++iw) {
          int input_index = ih * width + iw;
          offset_dx_data[input_index] += diff_val;
        }
      }
    }
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
    psroi_pool_grad, CPU, ALL_LAYOUT, phi::PsroiPoolGradKernel, float, double) {
  kernel->InputAt(2).SetDataType(
      paddle::experimental::CppTypeToDataType<int>::Type());
}