adagrad_op.h 4.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
C
chengduo 已提交
16

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19 20 21 22

namespace paddle {
namespace operators {

Q
QI JUN 已提交
23
template <typename DeviceContext, typename T>
Q
QI JUN 已提交
24
struct SparseAdagradFunctor {
C
chengduo 已提交
25 26 27 28
  void operator()(const DeviceContext &context,
                  const framework::SelectedRows &grad,
                  const framework::Tensor &learning_rate, T epsilon,
                  framework::Tensor *moment, framework::Tensor *param);
Q
QI JUN 已提交
29 30
};

S
sneaxiy 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44
template <typename DeviceContext, typename T>
framework::SelectedRows SquareSelectedRows(
    const DeviceContext &context, const framework::SelectedRows &input) {
  framework::SelectedRows out;
  out.set_rows(input.rows());
  out.set_height(input.height());
  out.mutable_value()->mutable_data<T>(input.value().dims(),
                                       context.GetPlace());
  auto e_out = framework::EigenVector<T>::Flatten(*(out.mutable_value()));
  auto e_in = framework::EigenVector<T>::Flatten(input.value());
  e_out.device(*context.eigen_device()) = e_in.square();
  return out;
}

Q
QI JUN 已提交
45
template <typename DeviceContext, typename T>
46 47
class AdagradOpKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
48 49 50 51 52
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
S
sneaxiy 已提交
53 54
                   ctx.Inputs("Param").front(),
                   framework::ToTypeName(param_var->Type()));
C
chengduo 已提交
55 56 57

    auto *param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
    auto *moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
58

K
Kexin Zhao 已提交
59 60
    param_out_tensor->mutable_data<T>(ctx.GetPlace());
    moment_out_tensor->mutable_data<T>(ctx.GetPlace());
61

Q
QI JUN 已提交
62 63
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));

C
chengduo 已提交
64
    auto *grad_var = ctx.InputVar("Grad");
Q
QI JUN 已提交
65 66 67 68 69 70 71
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto param = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Param"));
      auto grad = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Grad"));
      auto moment = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Moment"));
C
chengduo 已提交
72
      auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
Q
QI JUN 已提交
73 74 75

      auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
      auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
C
chengduo 已提交
76
      auto *place = ctx.template device_context<DeviceContext>().eigen_device();
Q
QI JUN 已提交
77

Q
QI JUN 已提交
78
      moment_out.device(*place) = moment + grad * grad;
Q
QI JUN 已提交
79
      Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
P
peterzhang2029 已提交
80
      if (platform::is_cpu_place(ctx.GetPlace())) {
C
chengduo 已提交
81
        auto *lr = learning_rate->data<T>();
P
peterzhang2029 已提交
82 83 84 85 86 87 88 89
        param_out.device(*place) =
            param - lr[0] * grad / (moment_out.sqrt() + epsilon);
      } else {
        auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
        param_out.device(*place) =
            param -
            lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
      }
Q
QI JUN 已提交
90
    } else if (grad_var->IsType<framework::SelectedRows>()) {
C
chengduo 已提交
91
      auto *param_tensor = ctx.Input<framework::Tensor>("Param");
Q
QI JUN 已提交
92 93
      PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor);

C
chengduo 已提交
94
      auto *moment_tensor = ctx.Input<framework::Tensor>("Moment");
Q
QI JUN 已提交
95 96
      PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor);

Q
QI JUN 已提交
97 98 99
      SparseAdagradFunctor<DeviceContext, T> functor;
      functor(ctx.template device_context<DeviceContext>(),
              *ctx.Input<framework::SelectedRows>("Grad"),
Q
QI JUN 已提交
100 101 102 103 104
              *ctx.Input<framework::Tensor>("LearningRate"), epsilon,
              moment_out_tensor, param_out_tensor);
    } else {
      PADDLE_THROW("Unsupported Variable Type of Grad");
    }
105 106 107 108 109
  }
};

}  // namespace operators
}  // namespace paddle