debugging.py 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
16 17 18 19 20
import os
import random
from enum import Enum

import numpy as np
21 22

import paddle
23
from paddle.fluid import core
24 25 26 27 28 29 30 31 32
from paddle.fluid.framework import dygraph_only

__all__ = [
    "enable_operator_stats_collection",
    "disable_operator_stats_collection",
    "collect_operator_stats",
]


33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
class DebugMode(Enum):
    CHECK_NAN_INF_AND_ABORT = 0
    CHECK_NAN_INF = 1
    CHECK_ALL_FOR_OVERFLOW = 2
    CHECK_ALL = 3
    CHECK_ALL_AND_ABORT = 4
    DUMP_ALL = 5


class TensorCheckerConfig:
    """
    Collect the config for checking nan and inf in module or op tensor.

    Args:
    * enable: Whether to enable Tensor's value detection function. The default value is False, which means that these tools will never be used.

    * debug_mode: Debug mode,There are 6 kinds of debug mode.
        CHECK_NAN_INF_AND_ABORT(default): Print or save Tensor key information with NaN/Inf and interrupt the program
        CHECK_NAN_INF: Print or save Tensor critical information with NaN/Inf, but continue to run
        CHECK_ALL_AND_ABORT: Print or save the output Tensor key information of all operators, and interrupt the program if NaN/Inf occurs
        CHECK_ALL_FOR_OVERFLOW: Check the output of the FP32 operator, print or save key Tensor information that exceeds the FP16 representation range (overflow, underflow)
        CHECK_ALL: Print or save output Tensor key information for all operators
        DUMP_ALL: Saves all Tensor data. This mode does not print on the terminal

    * dump_dir: The collection data storage path. If it is None, it will be directly printed to the terminal

    * checked_op_list: A list of operators you want to check

    * skipped_op_list: A list of operators to skip checking

    * debug_step: The iteration scope of debugging

    * stack_height_limit: The maximum depth of the call stack, and supports printing the call stack at the error location. The specific scheme needs to be investigated

    * enable_traceback_filtering: Whether to filter the traceback. The main purpose is to filter out the internal code call stack of the framework and only display the user code call stack

    Examples:
       .. code-block:: python
          import paddle

          checker_config = paddle.amp.debugging.TensorCheckerConfig(enable=True, debug_mode=DebugMode.CHECK_NAN_INF_AND_ABORT)
          paddle.amp.debugging.enable_tensor_checker(checker_config)

          x = paddle.to_tensor([1, 0, 3], place=paddle.CPUPlace(), dtype='float32', stop_gradient=False)
          y = paddle.to_tensor([0.2, 0, 0.5], place=paddle.CPUPlace(), dtype='float32')
          res = paddle.pow(x, y)

          paddle.autograd.backward(res, retain_graph=True)
          paddle.amp.debugging.disable_tensor_checker()

    """

    # For module debugging
    Current_step_id = 0

    def __init__(
        self,
        enable,
        debug_mode=DebugMode.CHECK_NAN_INF_AND_ABORT,
        dump_dir=None,
        checked_op_list=None,
        skipped_op_list=None,
        debug_step=None,
        stack_height_limit=3,
        enable_traceback_filtering=False,
    ):

        self.enable = enable
        self.debug_mode = debug_mode
        self.dump_dir = dump_dir

        self.checked_op_list = checked_op_list
        self.skipped_op_list = skipped_op_list

        self.debug_step = debug_step
        self.stack_height_limit = stack_height_limit

        self.enable_traceback_filtering = enable_traceback_filtering

        self.start_step = None
        self.end_step = None

        self.seed = 123
        self.initial_seed = 123

        # check debug_step
        if debug_step is not None:
            if isinstance(debug_step, (tuple, list)):
                assert (
                    len(self.debug_step) == 2
                    and self.debug_step[1] > self.debug_step[0]
                )
                self.start_step, self.end_step = self.debug_step
                self.start_step = max(self.start_step, 0)
            else:
                raise ValueError("debug_step must be list or tuple")

        if core.is_compiled_with_cuda():
            for i in range(core.get_cuda_device_count()):
                self.initial_seed = core.default_cuda_generator(
                    i
                ).initial_seed()
        elif core.is_compiled_with_xpu():
            for i in range(core.get_xpu_device_count()):
                self.initial_seed = core.default_xpu_generator(i).initial_seed()

        self.initial_seed = core.default_cpu_generator().initial_seed()

        # check debug_mode
        if self.debug_mode.name not in DebugMode.__members__:
            raise ValueError(
                "debug_mode in DebugMode",
                self.debug_mode,
                DebugMode.__members__,
            )

        # check checked_op_list
        if self.checked_op_list is not None:
            if isinstance(self.checked_op_list, (list, tuple)):
                check_op_list = ",".join(
                    value for value in self.checked_op_list
                )
                os.environ["Paddle_check_nan_inf_op_list"] = str(check_op_list)
            else:
                raise ValueError("checked_op_list must be list or tuple")

        # check skipped_op_list
        if self.skipped_op_list is not None:
            if isinstance(self.skipped_op_list, (list, tuple)):
                skipped_op_list = ",".join(
                    value for value in self.skipped_op_list
                )
                os.environ["Paddle_skip_nan_inf_op_list"] = str(skipped_op_list)
            else:
                raise ValueError("skipped_op_list must be list or tuple")

        if self.enable:
            self._set_seed(self.enable)

    def keep_random(self, seed, flag):
        # get random seed
        self.seed = seed
        paddle.seed(self.seed)
        np.random.seed(self.seed)
        random.seed(self.seed)

        # set cudnn and cpu
        if core.is_compiled_with_cuda():
            paddle.set_flags({"FLAGS_cudnn_deterministic": flag})
        paddle.set_flags({"FLAGS_cpu_deterministic": flag})

        # info
        print("AMP Debugging TensorCheckerConfig: seed ", self.seed)
        print(
            "AMP Debugging TensorCheckerConfig: FLAGS_cudnn_deterministic is ",
            flag,
        )
        print(
            "AMP Debugging TensorCheckerConfig: FLAGS_cpu_deterministic is ",
            flag,
        )

    def _set_seed(self, enable):
        if self.initial_seed != self.seed:
            self.seed = self.initial_seed
        if self.seed > 4294967295 or self.seed < 0:
            print("[Warnning: Seed must be between 0 and 2**32 - 1")
            self.seed = 123
            self.keep_random(self.seed, True)

    def _set_env(self, check_flag):
        paddle.set_flags({"FLAGS_check_nan_inf": check_flag})
        if check_flag:
            # set debug level
            paddle.set_flags(
                {"FLAGS_check_nan_inf_level": self.debug_mode.value}
            )

            # set output_dir
            if self.dump_dir is not None:
                paddle.fluid.core.set_nan_inf_debug_path(self.dump_dir)

            # set stack_height_limit
            if isinstance(self.stack_height_limit, (int)):
                paddle.set_flags(
                    {"FLAGS_call_stack_level": self.stack_height_limit}
                )
            else:
                raise ValueError("stack_height_limit must be int")

    def check(self):
        if self.enable:
            if self.start_step is not None and self.end_step is not None:
                if (
                    self.start_step > TensorCheckerConfig.Current_step_id
                    or TensorCheckerConfig.Current_step_id >= self.end_step
                ):
                    return False
                else:
                    TensorCheckerConfig.Current_step_id += 1
            return True
        return False

    def run(self):
        if self.enable:
            self._set_env(self.enable)

    def end(self):
        self._set_env(False)


244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
def _get_operator_stats_flag():
    flags = paddle.get_flags(["FLAGS_low_precision_op_list"])
    return flags["FLAGS_low_precision_op_list"]


def _print_operator_stats(op_count_dict):
    """
    Parse and print the stats of operators, mainly including the calls of
    dtypes such as different fp32, fp16, bf16 and others.

    Args:
        op_count_dict(dict): a dict to record the number of calls for different
            operator and dtype. An example is
            {'conv2d': '1,0,0,0', 'elementwise_add': '1,0,0,0'} or
            {'conv2d': [1, 0, 0, 0], 'elementwise_add': [1, 0, 0, 0]}.
    """
    print("<{:-^120}>".format(" op list "))
    total_ops = 0
    print(
        "<{:-^40}".format(" Op Name "),
        "|",
        "{:-^17}".format(" FP16 Calls "),
        "|",
        "{:-^17}".format(" BF16 Calls "),
        "|",
        "{:-^17}".format(" FP32 Calls"),
        "|",
        "{:-^17}>".format(" Other Calls "),
    )
    if op_count_dict is not None and isinstance(op_count_dict, dict):
274
        for op_type in sorted(op_count_dict):
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
            # fp16, bf16, fp32, other
            value = op_count_dict[op_type]
            if isinstance(value, list):
                called = value
            elif isinstance(value, str):
                called = value.split(",")
            else:
                raise ValueError(
                    "Input {} is expected to be a list of str, but recieved {}.".format(
                        value, type(value)
                    )
                )
            print(
                "  %-40s|  %-17s|  %-17s|  %-17s|  %-17s"
                % (op_type, called[0], called[1], called[2], called[3])
            )
            total_ops += 1
    print("<{:-^120}>\n".format(" op count: " + str(total_ops) + " "))


@dygraph_only
def enable_operator_stats_collection():
    """
    Enable to collect the number of operators for different data types.
    The statistical data are categorized according to four data types, namely
    float32, float16, bfloat16 and others. This funciton is used in pair with
    the corresponding disable function.

    Examples:

     .. code-block:: python

        import paddle

        conv = paddle.nn.Conv2D(3, 2, 3)
        x = paddle.rand([10, 3, 32, 32])

        paddle.amp.debugging.enable_operator_stats_collection()
        # AMP list including conv2d, elementwise_add, reshape2, cast (transfer_dtype)
        with paddle.amp.auto_cast(enable=True, level='O2'):
            out = conv(x)
        # Print to the standard output.
        paddle.amp.debugging.disable_operator_stats_collection()
        # <------------------------------------------------------- op list -------------------------------------------------------->
        # <--------------- Op Name ---------------- | -- FP16 Calls --- | -- BF16 Calls --- | --- FP32 Calls--- | -- Other Calls -->
        #   conv2d                                  |  1                |  0                |  0                |  0
        #   elementwise_add                         |  1                |  0                |  0                |  0
        #   reshape2                                |  1                |  0                |  0                |  0
        #   transfer_dtype                          |  0                |  0                |  3                |  0
        # <----------------------------------------------------- op count: 4 ------------------------------------------------------>

    """
    # Clear the previous stats.
    paddle.fluid.core.clear_low_precision_op_list()
    paddle.set_flags({'FLAGS_low_precision_op_list': 1})


@dygraph_only
def disable_operator_stats_collection():
    """
    Disable the collection the number of operators for different data types.
    This funciton is used in pair with the corresponding enable function.
    The statistical data are categorized according to four data types, namely
    float32, float16, bfloat16 and others, and will be printed after the
    function call.

    Examples:

     .. code-block:: python

        import paddle

        conv = paddle.nn.Conv2D(3, 2, 3)
        x = paddle.rand([10, 3, 32, 32])

        paddle.amp.debugging.enable_operator_stats_collection()
        # AMP list including conv2d, elementwise_add, reshape2, cast (transfer_dtype)
        with paddle.amp.auto_cast(enable=True, level='O2'):
            out = conv(x)
        # Print to the standard output.
        paddle.amp.debugging.disable_operator_stats_collection()
        # <------------------------------------------------------- op list -------------------------------------------------------->
        # <--------------- Op Name ---------------- | -- FP16 Calls --- | -- BF16 Calls --- | --- FP32 Calls--- | -- Other Calls -->
        #   conv2d                                  |  1                |  0                |  0                |  0
        #   elementwise_add                         |  1                |  0                |  0                |  0
        #   reshape2                                |  1                |  0                |  0                |  0
        #   transfer_dtype                          |  0                |  0                |  3                |  0
        # <----------------------------------------------------- op count: 4 ------------------------------------------------------>

    """
    if not _get_operator_stats_flag():
        return

    op_count_dict = paddle.fluid.core.get_low_precision_op_list()
    _print_operator_stats(op_count_dict)
    paddle.set_flags({'FLAGS_low_precision_op_list': 0})


@dygraph_only
@contextlib.contextmanager
def collect_operator_stats():
    """
    The context switcher to enable to collect the number of operators for
    different data types. The statistical data are categorized according
    to four data types, namely float32, float16, bfloat16 and others, and
    will be printed when exiting the context.

    Examples:

     .. code-block:: python

        import paddle

        conv = paddle.nn.Conv2D(3, 2, 3)
        x = paddle.rand([10, 3, 32, 32])

        with paddle.amp.debugging.collect_operator_stats():
            # AMP list including conv2d, elementwise_add, reshape2, cast (transfer_dtype)
            with paddle.amp.auto_cast(enable=True, level='O2'):
                out = conv(x)
        # Print to the standard output.
        # <------------------------------------------------------- op list -------------------------------------------------------->
        # <--------------- Op Name ---------------- | -- FP16 Calls --- | -- BF16 Calls --- | --- FP32 Calls--- | -- Other Calls -->
        #   conv2d                                  |  1                |  0                |  0                |  0
        #   elementwise_add                         |  1                |  0                |  0                |  0
        #   reshape2                                |  1                |  0                |  0                |  0
        #   transfer_dtype                          |  0                |  0                |  3                |  0
        # <----------------------------------------------------- op count: 4 ------------------------------------------------------>

    """
    enable_operator_stats_collection()
    yield
    disable_operator_stats_collection()
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465


def enable_tensor_checker(checker_config):
    """
    enable_tensor_checker(checker_config) is enables model level accuracy checking, which is used together with disables_tensor_checker() to achieve model level precision checking through the combination of these two APIs, checking the output Tensors of all operators within the specified range.

    Attention:

    * If disable is called before loss. backward()_tensor_checker(), the gradient operator is not checked;

    * If disable is called before optimizer.step() tensor_checker(), the optimizer and other weight update related operators will not be checked

    Examples:
       .. code-block:: python
           import paddle

           checker_config = paddle.amp.debugging.TensorCheckerConfig(enable=True, debug_mode=DebugMode.CHECK_NAN_INF_AND_ABORT)
           paddle.amp.debugging.enable_tensor_checker(checker_config)

           x = paddle.to_tensor([1, 0, 3], place=paddle.CPUPlace(), dtype='float32', stop_gradient=False)
           y = paddle.to_tensor([0.2, 0, 0.5], place=paddle.CPUPlace(), dtype='float32')
           res = paddle.pow(x, y)
           paddle.autograd.backward(res, retain_graph=True)

           paddle.amp.debugging.disable_tensor_checker()
    """
    if checker_config.check():
        checker_config.run()
    else:
        checker_config.end()


def disable_tensor_checker():
    """
    disable_tensor_checker() to disables the accuracy checking, which is used together with enables_tensor_checker(config) to achieve model level precision checking through the combination of these two APIs, checking the output Tensors of all operators within the specified range.

    Attention:

    * If disable_tensor_checker() is called before loss.backward(), the gradient operator is not checked;

    * If disable_tensor_checker() is called before optimizer.step(), the optimizer and other weight update related operators will not be checked

    Examples:
       .. code-block:: python
           import paddle

           checker_config = paddle.amp.debugging.TensorCheckerConfig(enable=True, debug_mode=DebugMode.CHECK_NAN_INF_AND_ABORT)
           paddle.amp.debugging.enable_tensor_checker(checker_config)

           x = paddle.to_tensor([1, 0, 3], place=paddle.CPUPlace(), dtype='float32', stop_gradient=False)
           y = paddle.to_tensor([0.2, 0, 0.5], place=paddle.CPUPlace(), dtype='float32')
           res = paddle.pow(x, y)
           paddle.autograd.backward(res, retain_graph=True)

           paddle.amp.debugging.disable_tensor_checker()

    """
    paddle.set_flags({"FLAGS_check_nan_inf": 0})