slice_op_plugin.h 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <string>
#include <vector>

#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

29 30 31
class SlicePlugin : public PluginTensorRT {
 public:
  explicit SlicePlugin(std::vector<int> starts, std::vector<int> ends,
32
                       std::vector<int> axes, bool with_fp16);
33 34 35 36 37 38 39 40 41 42 43 44 45 46

  // It was used for tensorrt deserialization.
  // It should not be called by users.
  SlicePlugin(void const* serial_data, size_t serial_length);
  ~SlicePlugin();
  SlicePlugin* clone() const override;

  const char* getPluginType() const override { return "slice_plugin"; }
  int getNbOutputs() const override { return 1; }
  int initialize() override { return 0; }
  bool supportsFormat(nvinfer1::DataType type,
                      nvinfer1::PluginFormat format) const override;
  nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs,
                                     int nb_input_dims) override;
47
#if IS_TRT_VERSION_LT(8000)
48
  int enqueue(int batch_size, const void* const* inputs, void** outputs,
49 50 51
#else
  int enqueue(int batch_size, const void* const* inputs, void* const* outputs,
#endif
52 53
              void* workspace, cudaStream_t stream) override;

54
  size_t getSerializationSize() const override;
55 56 57

  // TRT will call this func  to serialize the configuration of TRT
  // It should not be called by users.
58
  void serialize(void* buffer) const override;
59 60 61 62 63 64 65 66 67 68

 private:
  std::vector<int> starts_;
  std::vector<int> ends_;
  std::vector<int> axes_;
  int* offset_temp_data_{nullptr};
  cudaEvent_t copy_event_;
  cudaStream_t copy_stream_;
};

69 70 71 72 73 74 75 76 77 78 79 80 81 82
class SlicePluginCreator : public TensorRTPluginCreator {
 public:
  const char* getPluginName() const override { return "slice_plugin"; }

  const char* getPluginVersion() const override { return "1"; }

  nvinfer1::IPluginV2* deserializePlugin(const char* name,
                                         const void* serial_data,
                                         size_t serial_length) override {
    return new SlicePlugin(serial_data, serial_length);
  }
};
REGISTER_TRT_PLUGIN_V2(SlicePluginCreator);

83 84 85 86
#if IS_TRT_VERSION_GE(6000)
class SlicePluginDynamic : public DynamicPluginTensorRT {
 public:
  explicit SlicePluginDynamic(std::vector<int> starts, std::vector<int> ends,
87
                              std::vector<int> axes, bool with_fp16);
88

89
  nvinfer1::IPluginV2DynamicExt* clone() const override {
90
    return new SlicePluginDynamic(starts_, ends_, axes_, with_fp16_);
91 92
  }

93 94
  SlicePluginDynamic(void const* serialData, size_t serialLength);

95
  const char* getPluginType() const override { return "slice_plugin_dynamic"; }
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  int getNbOutputs() const override { return 1; }
  int initialize() override;

  size_t getSerializationSize() const override;
  void serialize(void* buffer) const override;

  nvinfer1::DimsExprs getOutputDimensions(
      int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
      nvinfer1::IExprBuilder& expr_builder) override;

  bool supportsFormatCombination(int pos,
                                 const nvinfer1::PluginTensorDesc* inOut,
                                 int nbInputs, int nbOutputs) override;

  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
                       int nbInputs,
                       const nvinfer1::DynamicPluginTensorDesc* out,
                       int nbOutputs) override {}

  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
                          int nbInputs,
                          const nvinfer1::PluginTensorDesc* outputs,
                          int nbOutputs) const override {
    return 0;
  }

  int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
              const nvinfer1::PluginTensorDesc* outputDesc,
              const void* const* inputs, void* const* outputs, void* workspace,
              cudaStream_t stream) override;
  nvinfer1::DataType getOutputDataType(int index,
                                       const nvinfer1::DataType* inputTypes,
                                       int nbInputs) const override;

130
  void destroy() override;
131 132 133 134 135

 private:
  std::vector<int> starts_;
  std::vector<int> ends_;
  std::vector<int> axes_;
136 137 138
  int* offset_temp_data_{nullptr};
  cudaEvent_t copy_event_;
  cudaStream_t copy_stream_;
139
};
140

141
class SlicePluginDynamicCreator : public TensorRTPluginCreator {
142
 public:
143
  const char* getPluginName() const override { return "slice_plugin_dynamic"; }
144 145 146 147 148 149

  const char* getPluginVersion() const override { return "1"; }

  nvinfer1::IPluginV2* deserializePlugin(const char* name,
                                         const void* serialData,
                                         size_t serialLength) override {
150
    return new SlicePluginDynamic(serialData, serialLength);
151 152
  }
};
W
Wilber 已提交
153
REGISTER_TRT_PLUGIN_V2(SlicePluginDynamicCreator);
154

155 156 157 158 159 160
#endif

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle