framework.py 68.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21

Y
Yu Yang 已提交
22
import numpy as np
Q
qiaolongfei 已提交
23

M
minqiyang 已提交
24
from .. import compat as cpt
25
from .proto import framework_pb2
26 27
try:
    from . import core
28
except ImportError as e:
29 30 31 32
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
33
    directory. The original error is: \n""" + cpt.get_exception_message(e))
34
except Exception as e:
35
    raise e
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40
    'Program',
    'Operator',
F
fengjiayi 已提交
41
    'Parameter',
42 43 44
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
45
    'get_var',
46
]
Y
Yu Yang 已提交
47

Q
qiaolongfei 已提交
48 49 50 51
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
52 53 54 55 56 57
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()


def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
58 59 60 61


def grad_var_name(var_name):
    """
62 63
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
64 65 66
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
67

68
def convert_np_dtype_to_dtype_(np_dtype):
69 70
    """
    Convert the data type in numpy to the data type in Paddle
71

72
    Args:
73
        np_dtype(np.dtype): the data type in numpy.
74

75 76
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
77 78

    """
79 80
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
81
        return core.VarDesc.VarType.FP32
82
    elif dtype == np.float64:
83
        return core.VarDesc.VarType.FP64
84
    elif dtype == np.float16:
85
        return core.VarDesc.VarType.FP16
86
    elif dtype == np.int32:
87
        return core.VarDesc.VarType.INT32
88
    elif dtype == np.int16:
89
        return core.VarDesc.VarType.INT16
90
    elif dtype == np.int64:
91
        return core.VarDesc.VarType.INT64
92
    elif dtype == np.bool:
93
        return core.VarDesc.VarType.BOOL
94 95
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
96 97
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
98
    else:
M
minqiyang 已提交
99
        raise ValueError("Not supported numpy dtype %s" % dtype)
100 101 102


def dtype_is_floating(dtype):
103 104 105
    """
    Check the data type is floating or not.
    Args:
106
        dtype(np.dtype|core.VarDesc.VarType): data type.
107 108 109 110 111
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
112
    if not isinstance(dtype, core.VarDesc.VarType):
113 114
        dtype = convert_np_dtype_to_dtype_(dtype)

115 116 117 118
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
119 120


Y
Yang Yang(Tony) 已提交
121
def _debug_string_(proto, throw_on_error=True):
122 123 124 125 126 127 128 129 130 131 132
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
133
    error_fields = list()
Y
Yang Yang(Tony) 已提交
134
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
135 136
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
137 138 139
    return proto.__str__()


Y
Yu Yang 已提交
140
class Variable(object):
141
    """
142 143 144
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
145
    two variables in different blocks could have the same name.
146

147 148
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
149

150
    Most of a Variable's member variables can be setted to be None. It mean
151
    it is not available or will be specified later.
152 153

    Args:
154
        block(Block): The block that the variable belongs to.
155 156
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
157 158
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
159
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
160
            Some kinds of variable do not contain shape, just set it to None.
161 162 163
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
164
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
165
            series data.
166
            Default: None
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
189 190
    """

Y
Yu Yang 已提交
191 192
    def __init__(self,
                 block,
Y
Yu Yang 已提交
193
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
194 195 196 197
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
198
                 capacity=None,
Q
QI JUN 已提交
199
                 persistable=None,
F
fengjiayi 已提交
200
                 error_clip=None,
Y
Yu Yang 已提交
201
                 stop_gradient=False,
F
fengjiayi 已提交
202
                 is_data=False,
Y
Yu Yang 已提交
203
                 **kwargs):
Y
Yu Yang 已提交
204
        self.block = block
F
fengjiayi 已提交
205
        self.error_clip = error_clip
Y
Yu Yang 已提交
206 207

        if name is None:
Y
Yu Yang 已提交
208
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
209
        is_new_var = False
M
minqiyang 已提交
210
        name = cpt.to_text(name)
M
minqiyang 已提交
211
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
212 213

        if self.desc is None:
M
minqiyang 已提交
214
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
215
            is_new_var = True
Y
Yu Yang 已提交
216

Y
Yu Yang 已提交
217 218 219 220 221 222 223 224
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
225
        if shape is not None:
Y
Yu Yang 已提交
226
            if is_new_var:
227
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
228 229 230 231 232 233 234 235
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
236
        if dtype is not None:
237
            if not isinstance(dtype, core.VarDesc.VarType):
238
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
239
            if is_new_var:
F
fengjiayi 已提交
240
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
241
            else:
F
fengjiayi 已提交
242
                old_dtype = self.dtype
Q
QI JUN 已提交
243
                if dtype != old_dtype:
Y
Yu Yang 已提交
244 245 246 247 248
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
249 250

        if lod_level is not None:
Y
Yu Yang 已提交
251
            if is_new_var:
252
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
253 254 255 256 257 258 259
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
260 261 262 263 264 265 266 267 268 269 270
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

271 272 273 274 275 276 277 278
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
279
        self.block.vars[name] = self
Y
Yu Yang 已提交
280
        self.op = None
Y
Yu Yang 已提交
281
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
282
        self.is_data = is_data
Y
Yu Yang 已提交
283

284
    def __str__(self):
Y
Yang Yang(Tony) 已提交
285 286
        return self.to_string(True)

F
update  
fengjiayi 已提交
287
    def to_string(self, throw_on_error, with_details=False):
288 289 290 291
        """
        Get debug string.

        Args:
292 293
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
294
            with_details(bool): more details about variables and parameters
295 296
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
297

298 299
        Returns:
            str: The debug string.
300
        """
F
update  
fengjiayi 已提交
301 302
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
303
        protostr = self.desc.serialize_to_string()
304
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
305 306 307 308
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
309 310
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
311
        return res_str
312 313 314

    __repr__ = __str__

W
Wu Yi 已提交
315
    def _set_desc(self, input):
316 317 318 319 320 321 322 323 324
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
325 326
        self.desc = input

327 328 329 330
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
331 332 333 334
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
335 336
    @property
    def name(self):
M
minqiyang 已提交
337
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
338

T
typhoonzero 已提交
339 340 341 342
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
343 344 345
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
346
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
347 348

    @property
F
fengjiayi 已提交
349 350
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
351 352 353

    @property
    def lod_level(self):
354
        return self.desc.lod_level()
Y
Yu Yang 已提交
355

Y
Yu Yang 已提交
356 357 358 359
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
360
    def _set_error_clip(self, error_clip):
361 362 363 364 365 366 367 368 369
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
370 371
        self.error_clip = error_clip

Y
Yu Yang 已提交
372

F
fengjiayi 已提交
373 374 375
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
376

377 378
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
379 380 381 382
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
383
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
384 385 386 387 388
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
389 390 391 392
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
393 394 395 396 397 398 399 400 401
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
402
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
403 404 405 406 407 408
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
409 410 411 412 413 414 415 416
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
417 418
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
419 420
        return self.op_proto_map[type]

421 422 423 424 425 426 427
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
428

Y
Yu Yang 已提交
429
class Operator(object):
430
    """
431 432 433 434 435 436 437
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
438
        type(str): The type of operator. Default None.
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
459
        Block.append_op or Block._prepend_op instead.
460 461 462 463 464 465 466 467 468 469

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
470
    """
471 472 473 474 475
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
476
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
477
    }
478

Y
Yu Yang 已提交
479 480
    def __init__(self,
                 block,
Y
Yu Yang 已提交
481
                 desc,
Y
Yu Yang 已提交
482 483 484 485 486
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
487
        self.desc = desc
G
gongweibao 已提交
488 489 490 491 492
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
493 494 495 496
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
497 498
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
499 500 501

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
502 503
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
504

G
gongweibao 已提交
505 506
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
507

F
fengjiayi 已提交
508 509 510 511 512
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
513
        self.desc.set_type(type)
F
fengjiayi 已提交
514
        proto = OpProtoHolder.instance().get_op_proto(type)
515

Y
Yang Yang(Tony) 已提交
516 517
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
518
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
519 520
                    return True
            return False
Q
QI JUN 已提交
521

Y
Yang Yang(Tony) 已提交
522 523 524 525 526 527 528
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
529 530 531 532
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
533 534
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
535 536 537
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
538
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
539
                            in_arg_names.append(arg)
540 541
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
542
                        else:
M
minqiyang 已提交
543
                            in_arg_names.append(cpt.to_text(arg.name))
544
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
545 546
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
547

Y
Yu Yang 已提交
548
        if outputs is not None:
549 550 551 552 553 554 555
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
556 557
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
558 559 560
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
561

F
fengjiayi 已提交
562
            for out_proto in proto.outputs:
563 564 565 566
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
567 568
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
569 570 571
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
572
                    out_arg_names.append(cpt.to_text(arg.name))
573 574
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
575

G
gongweibao 已提交
576 577
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
578
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
579
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
580
                attr_name = attr.name
G
gongweibao 已提交
581
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
582
                    continue
G
gongweibao 已提交
583
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
584 585
                self._update_desc_attr(attr_name, attr_val)

586
        self.desc.check_attrs()
587
        if self.has_kernel(type):
Q
QI JUN 已提交
588
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
589
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
590

591 592 593
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
594
    def to_string(self, throw_on_error):
595
        """
596 597
        Get debug string.

598
        Args:
599 600
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
601

602 603
        Returns:
            str: The debug string.
604 605

        """
606
        protostr = self.desc.serialize_to_string()
607
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
608 609 610 611
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
612 613 614

    __repr__ = __str__

F
fengjiayi 已提交
615 616 617 618 619
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
620
        """
621
        Get the input arguments according to the input parameter name.
622

623 624
        Args:
            name(str): The input parameter name.
625

626 627 628
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
629
        """
F
fengjiayi 已提交
630 631
        return self.desc.input(name)

T
typhoonzero 已提交
632
    def rename_input(self, old_name, new_name):
633 634 635 636 637 638 639 640 641 642
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
643 644 645
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
646 647 648 649 650 651 652 653 654 655
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
656 657
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
658 659 660 661
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
662 663 664 665 666 667 668 669
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
670
    def output(self, name):
671
        """
672
        Get output arguments by the output parameter name.
673

674 675
        Args:
            name(str): The output parameter name.
676

677 678 679
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
680
        """
F
fengjiayi 已提交
681 682 683 684 685 686
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

687 688 689 690 691 692 693 694
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
695
    def has_attr(self, name):
696
        """
697 698
        Whether this Operator has the attribute with name or not.

699
        Args:
700
            name(str): the attribute name.
701

702 703
        Returns:
            bool: True if has this attribute.
704 705

        """
F
fengjiayi 已提交
706 707 708
        return self.desc.has_attr(name)

    def attr_type(self, name):
709
        """
710
        Get the type of attribute by attribute's name.
711

712 713
        Args:
            name(str): the attribute name.
714

715 716
        Returns:
            core.AttrType: the attribute type.
717
        """
F
fengjiayi 已提交
718 719
        return self.desc.attr_type(name)

Y
yuyang18 已提交
720
    def set_attr(self, name, val):
721 722 723 724 725 726 727 728 729 730
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
744 745
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
746 747
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
748
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
749 750 751 752 753
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
754

F
fengjiayi 已提交
755 756 757 758 759
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
760
        """
761 762
        Get the attribute by name.

763
        Args:
764
            name(str): the attribute name.
765

766 767
        Returns:
            bool|int|str|float|list: The attribute value. The return value
768 769
            can be any valid attribute type.
        """
F
fengjiayi 已提交
770
        return self.desc.attr(name)
Y
Yu Yang 已提交
771

G
gongweibao 已提交
772
    def block_attr_id(self, name):
773
        """
G
gongweibao 已提交
774
        Get the block attribute's id by name.
775

776 777
        Args:
            name(str): the attribute name.
778

779 780
        Returns:
            int: the block index.
781
        """
G
gongweibao 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
828

J
JiayiFeng 已提交
829
    def all_attrs(self):
F
fengjiayi 已提交
830
        """
831 832 833
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
834
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
835 836 837 838
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
839 840
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
841
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
842 843 844 845 846 847 848 849
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
850 851
        return attr_map

Y
Yu Yang 已提交
852

Y
Yu Yang 已提交
853
class Block(object):
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
883
    def __init__(self, program, idx):
Y
Yu Yang 已提交
884
        self.desc = program.desc.block(idx)
885
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
886
        self.ops = list()  # operator list
Y
Yu Yang 已提交
887
        self.program = program
888
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
889

890
    def __str__(self):
Y
Yang Yang(Tony) 已提交
891 892
        return self.to_string(True)

F
fengjiayi 已提交
893 894
    def to_string(self, throw_on_error, with_details=False):
        """
895 896
        Get debug string.

F
fengjiayi 已提交
897 898
        Args:
            throw_on_error(bool): raise exception when self is not initialized
899
                when throw_on_error is True.
F
update  
fengjiayi 已提交
900
            with_details(bool): more details about variables and parameters
901 902
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
903

904 905
        Returns:
            str: The debug string.
F
fengjiayi 已提交
906 907 908 909
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
910
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
911 912
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
913
            for var in list(self.vars.values()):
F
fengjiayi 已提交
914
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
915
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
916
            for op in self.ops:
F
fengjiayi 已提交
917 918
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
919 920 921
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
922 923
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
924 925
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
926 927 928

    __repr__ = __str__

Y
Yu Yang 已提交
929 930
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
931
        return self.desc.parent
Y
Yu Yang 已提交
932

Y
Yu Yang 已提交
933 934 935 936
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
937
    def _set_forward_block_idx(self, idx):
938 939 940 941 942 943 944 945 946
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
947
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
948

Y
Yu Yang 已提交
949 950
    @property
    def idx(self):
Y
Yu Yang 已提交
951
        return self.desc.id
Y
Yu Yang 已提交
952

Q
Qiao Longfei 已提交
953
    def var(self, name):
954 955 956 957 958 959 960 961 962 963 964 965 966
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
967
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
968 969 970
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
971 972
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
973
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
974
        return v
Q
Qiao Longfei 已提交
975

W
Wu Yi 已提交
976
    def _var_recursive(self, name):
977 978 979 980 981 982 983 984 985 986 987 988 989
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1016

Q
Qiao Longfei 已提交
1017
    def all_parameters(self):
1018
        return list(self.iter_parameters())
1019

1020
    def iter_parameters(self):
M
minqiyang 已提交
1021
        return (item[1] for item in six.iteritems(self.vars)
1022
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1023

Y
Yu Yang 已提交
1024
    def create_var(self, *args, **kwargs):
1025
        var = Variable(block=self, *args, **kwargs)
1026 1027
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1028
        return var
Y
Yu Yang 已提交
1029

Q
Qiao Longfei 已提交
1030 1031 1032
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1033
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1034 1035
        """
        Rename variable in vars and ops' inputs and outputs
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1048
        """
M
minqiyang 已提交
1049 1050
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1051

T
typhoonzero 已提交
1052
        if not self.has_var(name):
1053
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1054 1055
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1056
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1057 1058 1059 1060 1061 1062 1063
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1064
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1065 1066 1067 1068
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1069
        orig_var_type = v.type
M
minqiyang 已提交
1070
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1071
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1072
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1073
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1074 1075 1076 1077
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1078
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1079 1080 1081 1082 1083 1084 1085
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1086
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1087 1088
            var = Variable(
                self,
T
typhoonzero 已提交
1089
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1090 1091 1092 1093
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1094
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1095 1096 1097
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1098
        self._sync_with_cpp()
1099
        return var
T
typhoonzero 已提交
1100

W
Wu Yi 已提交
1101 1102
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1103
        self.desc._remove_var(cpt.to_bytes(name))
1104 1105
        del self.vars[name]

Y
Yu Yang 已提交
1106 1107
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1108
        param = Parameter(global_block, *args, **kwargs)
1109
        if 'initializer' in kwargs:
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1130
        return param
Y
Yu Yang 已提交
1131

Y
Yu Yang 已提交
1132
    def append_op(self, *args, **kwargs):
1133 1134 1135 1136 1137 1138
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1139
        op_desc = self.desc.append_op()
1140
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1141 1142 1143
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1144
    def _insert_op(self, index, *args, **kwargs):
1145 1146 1147 1148 1149 1150 1151 1152 1153
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1154 1155
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1156 1157 1158 1159
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1160
    def _remove_op(self, index):
1161 1162 1163 1164 1165 1166 1167 1168 1169
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1170 1171
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1172 1173
        del self.ops[index]

W
Wu Yi 已提交
1174
    def _slice_ops(self, start, end):
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1185
        return self.ops[start:end]
Y
Yancey1989 已提交
1186

W
Wu Yi 已提交
1187 1188
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1189
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1190
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1191 1192
        return op

W
Wu Yi 已提交
1193
    def _sync_with_cpp(self):
1194
        """
1195 1196
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1197
        """
Q
Qiao Longfei 已提交
1198 1199 1200 1201 1202
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1203
        # sync variables removed from c++ end
1204
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1205
            if not self.desc.find_var(cpt.to_bytes(var)):
1206 1207
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1208
        # sync operators from cpp
1209 1210 1211 1212
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1229 1230 1231 1232 1233

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1234
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1235 1236 1237 1238 1239 1240 1241

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1255 1256 1257 1258
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1259
    def _copy_param_info_from(self, other):
1260
        """
1261 1262
        Copy the information of parameters from the other block.

1263
        Args:
1264 1265 1266 1267 1268
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1269 1270 1271 1272 1273

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1274 1275
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1276
        for p in other.iter_parameters():
1277 1278 1279
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1280
                raise ValueError("_copy_param_info_from should be invoked with "
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1293
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1294
                error_clip=p.error_clip,
1295 1296 1297
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1298
    def _clone_variable(self, var):
1299 1300
        """
        Clone a variable into current block.
1301

1302 1303 1304 1305
        Args:
            var: the variable to be cloned.

        Returns:
1306
            Variable: the new  variable cloned from 'var' in current block.
1307 1308
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1309 1310 1311 1312 1313
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1314 1315
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1316
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1317 1318 1319 1320 1321 1322
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1323 1324
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1325 1326 1327 1328 1329 1330 1331
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1332 1333
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1334
        return ret_var
1335

Y
Yu Yang 已提交
1336 1337

class Program(object):
D
dzhwinter 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1349
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1350 1351

    Returns:
Y
yuyang18 已提交
1352
        A empty program.
D
dzhwinter 已提交
1353 1354

    Examples:
Y
yuyang18 已提交
1355 1356 1357 1358 1359 1360
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1361 1362 1363

    """

1364 1365
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1366 1367
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1368
        self._seed = 0
Y
yuyang18 已提交
1369
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1370
        self._op_role_var = []
Y
yuyang18 已提交
1371 1372 1373

    @property
    def op_role(self):
Y
yuyang18 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1387 1388 1389 1390 1391 1392 1393 1394
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1395 1396 1397 1398 1399 1400 1401
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1402 1403 1404 1405
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1406
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1407 1408

    @contextlib.contextmanager
1409
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1410 1411 1412 1413 1414 1415 1416
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1417
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1418 1419 1420 1421

        Examples:

            >>> p, g = backward(...)
1422
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1423 1424
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1425 1426
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1427 1428 1429 1430
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1431
        yield
Y
yuyang18 已提交
1432
        self._op_role_var = []
Y
yuyang18 已提交
1433
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1434

1435
    def __str__(self):
Y
yuyang18 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1445 1446
        return self.to_string(True)

F
fengjiayi 已提交
1447 1448 1449
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1450

F
fengjiayi 已提交
1451
        Args:
Y
yuyang18 已提交
1452 1453
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1454

Y
yuyang18 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1475 1476
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1477 1478
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1479

1480
    def get_desc(self):
Y
yuyang18 已提交
1481 1482 1483 1484 1485 1486 1487
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1488 1489
        return self.desc

1490
    def clone(self, for_test=False):
Y
yuyang18 已提交
1491 1492 1493
        """
        Create a new, duplicated program.

1494

Y
yuyang18 已提交
1495 1496 1497 1498
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1499

Y
yuyang18 已提交
1500 1501 1502 1503
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1504 1505 1506 1507 1508
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1509 1510

        Args:
Y
yuyang18 已提交
1511 1512
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1513

D
dzhwinter 已提交
1514
        Returns:
Y
yuyang18 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1568 1569
        """
        if for_test:
1570
            p = self.inference_optimize(export_for_deployment=False)
1571
        else:
1572
            p = Program()
G
gongweibao 已提交
1573 1574
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1575
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1576 1577 1578
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1579 1580 1581 1582

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1583
            p._sync_with_cpp()
1584

W
Wu Yi 已提交
1585
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1586
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1587
        return p
1588

1589
    def prune(self, targets):
Y
yuyang18 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1605 1606 1607 1608 1609 1610
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1611 1612
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1613
                    # and we need to find the current op that generate this
1614 1615 1616 1617 1618 1619 1620 1621
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1622
                    t = t.op
1623 1624 1625 1626
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1627
                else:
1628 1629
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1630 1631 1632 1633

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1634 1635 1636
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1637
        res._sync_with_cpp()
1638 1639
        return res

1640
    def inference_optimize(self, export_for_deployment=True):
Y
yuyang18 已提交
1641
        """
F
fengjiayi 已提交
1642 1643 1644 1645 1646
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1647
        3. change the :code:`is_test`
Y
yuyang18 已提交
1648 1649 1650
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1651 1652 1653 1654
        Args:
            export_for_deployment(bool): remove the read ops that are added by py_reader
                                        for cpp inference library

Y
yuyang18 已提交
1655 1656 1657 1658 1659 1660
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1661 1662
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1663
        res = Program()
1664
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1665 1666 1667 1668

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        if export_for_deployment:
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1679
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1680 1681

        # change all `is_test` attributes to True
M
minqiyang 已提交
1682
        for i in six.moves.range(res.desc.num_blocks()):
1683
            block = res.desc.block(i)
M
minqiyang 已提交
1684
            for j in six.moves.range(block.op_size()):
1685 1686 1687
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1688 1689 1690
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1691
        res._sync_with_cpp()
1692 1693
        return res

1694 1695
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1696 1697 1698 1699 1700 1701 1702
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1703
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1704 1705 1706 1707

        Returns:
            Program: A deserialized program desc.
        """
1708 1709
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1710
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1711
        p._sync_with_cpp()
1712
        return p
Y
Yu Yang 已提交
1713

D
dzhwinter 已提交
1714 1715
    @property
    def random_seed(self):
Y
yuyang18 已提交
1716 1717 1718 1719 1720 1721
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1722 1723
        return self._seed

Q
qiaolongfei 已提交
1724 1725
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1726 1727 1728
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1729 1730
        return self.desc.num_blocks()

D
dzhwinter 已提交
1731 1732 1733 1734 1735 1736
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1737
    def __repr__(self):
1738
        return self.__str__()
1739

Y
Yu Yang 已提交
1740
    def global_block(self):
Y
yuyang18 已提交
1741 1742 1743
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1744 1745
        return self.blocks[0]

Q
Qiao Longfei 已提交
1746
    def block(self, index):
Y
yuyang18 已提交
1747 1748 1749 1750 1751 1752 1753 1754
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1755 1756
        return self.blocks[index]

Y
Yu Yang 已提交
1757
    def current_block(self):
Y
yuyang18 已提交
1758 1759 1760 1761
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1762 1763
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1764
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1775
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1776 1777 1778
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1779 1780 1781 1782 1783
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1784 1785 1786 1787 1788
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1789 1790
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1791
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1802 1803 1804
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1805
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1806

W
Wu Yi 已提交
1807
    def _copy_param_info_from(self, other):
1808
        """
1809
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1810

Y
yuyang18 已提交
1811 1812 1813
        Notes: This is a very low level API. Users should not invoke it
        directly.

1814 1815 1816 1817 1818 1819 1820
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1821
            raise TypeError("_copy_param_info_from should be invoked with "
1822 1823 1824
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1825
            raise ValueError("_copy_param_info_from should be invoked with two "
1826
                             "program, with represent the same topology")
W
Wu Yi 已提交
1827
        self.global_block()._copy_param_info_from(other.global_block())
1828

F
fengjiayi 已提交
1829 1830 1831
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1832

Y
yuyang18 已提交
1833 1834 1835
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1836 1837 1838 1839 1840 1841 1842
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1843
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1844 1845 1846
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1847
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1848
                             "program, with represent the same topology")
1849
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1850 1851 1852
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1853
    def list_vars(self):
Y
yuyang18 已提交
1854 1855 1856 1857 1858 1859
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1860
        for each_block in self.blocks:
1861
            for each_var in list(each_block.vars.values()):
1862 1863
                yield each_var

Y
Yu Yang 已提交
1864

Y
Yu Yang 已提交
1865
class Parameter(Variable):
1866
    """
1867
    Parameter is derived from Variable. A parameter is a persistable
1868
    Variable, and will be updated by optimizers after each iteration.
1869
    The training of a neural network is essentially the updating of
1870 1871
    its parameters.

1872
    Relative to a general Variable, a Parameter has several its own
1873 1874
    member variables:

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1887 1888
    """

Y
Yu Yang 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1899 1900 1901

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1902 1903 1904 1905
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1906 1907
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1908
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1909

W
wanghaoshuang 已提交
1910
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1911

F
fengjiayi 已提交
1912 1913 1914
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1915 1916 1917
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1918

F
update  
fengjiayi 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1933
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1934
            for attr_name in additional_attr:
1935 1936
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
1937 1938
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1939 1940 1941 1942
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1943

Y
Yu Yang 已提交
1944
# program is a global instance.
Y
Yu Yang 已提交
1945 1946
_main_program_ = Program()
_startup_program_ = Program()
1947

1948

1949
def default_startup_program():
Y
Yu Yang 已提交
1950
    """
Y
yuyang18 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1960

Y
Yu Yang 已提交
1961 1962 1963
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1964
    return _startup_program_
1965

1966

1967
def default_main_program():
Y
Yu Yang 已提交
1968
    """
Y
yuyang18 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1978

Y
Yu Yang 已提交
1979 1980 1981
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1982
    return _main_program_
Y
Yu Yang 已提交
1983 1984 1985 1986 1987


def switch_main_program(program):
    """
    Switch the main program to a new program.
1988

Y
Yu Yang 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2003
    Switch the startup program to a new program
Y
Yu Yang 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2019 2020 2021
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2022

Y
Yu Yang 已提交
2023
    Examples:
Y
yuyang18 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2034

Y
Yu Yang 已提交
2035
    Examples:
Y
yuyang18 已提交
2036 2037 2038 2039 2040 2041

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2042

Y
Yu Yang 已提交
2043
    Args:
Y
yuyang18 已提交
2044
        main_program(Program): New main program inside `with` statement.
2045
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2059 2060 2061 2062


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2063
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2064

X
xuwei06 已提交
2065 2066 2067
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2068
        If None, default_global_program() will be used.
X
xuwei06 已提交
2069 2070 2071 2072 2073 2074 2075

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2076
    assert isinstance(program, Program)
X
xuwei06 已提交
2077 2078

    return program.global_block().var(name)