layers.html 108.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Layers &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../../genindex.html"/>
        <link rel="search" title="Search" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html"/>
        <link rel="up" title="Fluid" href="../fluid.html"/>
        <link rel="next" title="DataFeeder" href="data_feeder.html"/>
        <link rel="prev" title="Fluid" href="../fluid.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
116
<li class="toctree-l3"><a class="reference internal" href="../../../howto/dev/build_en.html">Build using Docker</a></li>
117 118 119 120 121 122 123 124 125 126 127 128
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
129 130 131 132 133 134 135
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cluster/fabric_en.html">fabric</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cluster/openmpi_en.html">openmpi</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cluster/k8s_en.html">kubernetes</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cluster/k8s_aws_en.html">kubernetes on AWS</a></li>
</ul>
</li>
136 137
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
138
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/write_docs_en.html">Contribute Documentation</a></li>
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">API</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="../model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
<li class="toctree-l2 current"><a class="reference internal" href="../fluid.html">Fluid</a><ul class="current">
<li class="toctree-l3 current"><a class="current reference internal" href="#">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="regularizer.html">Regularizer</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
181
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_ios_en.html">PaddlePaddle Compiling Guide for iOS</a></li>
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../../index_en.html">API</a> > </li>
      
        <li><a href="../fluid.html">Fluid</a> > </li>
      
    <li>Layers</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="layers">
<h1>Layers<a class="headerlink" href="#layers" title="Permalink to this headline"></a></h1>
<div class="section" id="fc">
<h2>fc<a class="headerlink" href="#fc" title="Permalink to this headline"></a></h2>
222 223
<dl class="function">
<dt>
224
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">fc</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>num_flatten_dims=1</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
225
<dd><p><strong>Fully Connected Layer</strong></p>
226 227 228 229 230 231 232 233 234 235
<p>The fully connected layer can take multiple tensors as its inputs. It
creates a variable (one for each input tensor) called weights for each input
tensor, which represents a fully connected weight matrix from each input
unit to each output unit. The fully connected layer multiplies each input
tensor with its coresponding weight to produce an output Tensor. If
multiple input tensors are given, the results of multiple multiplications
will be sumed up. If bias_attr is not None, a biases variable will be
created and added to the output. Finally, if activation is not None,
it will be applied to the output as well.</p>
<p>This process can be formulated as follows:</p>
236
<div class="math">
237 238
\[Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})\]</div>
<p>In the above equation:</p>
239 240 241 242 243 244 245
<ul class="simple">
<li><span class="math">\(N\)</span>: Number of the input.</li>
<li><span class="math">\(X_i\)</span>: The input tensor.</li>
<li><span class="math">\(W\)</span>: The weights created by this layer.</li>
<li><span class="math">\(b\)</span>: The bias parameter created by this layer (if needed).</li>
<li><span class="math">\(Act\)</span>: The activation funtion.</li>
<li><span class="math">\(Out\)</span>: The output tensor.</li>
246
</ul>
247 248 249 250 251 252 253 254 255
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable|list</em>) &#8211; The input tensor(s) to the fully connected layer.</li>
<li><strong>size</strong> (<em>int</em>) &#8211; The number of output units in the fully connected layer.</li>
<li><strong>num_flatten_dims</strong> (<em>int</em>) &#8211; The fc layer can accept an input tensor with more
than two dimensions. If this happens, the
256 257 258 259 260 261 262 263 264 265 266 267 268
multidimensional tensor will first be flattened
into a 2-dimensional matrix. The parameter
<cite>num_flatten_dims</cite> determines how the input tensor
is flattened: the first <cite>num_flatten_dims</cite>
dimensions will be flatten to form the first
dimension of the final matrix (height of the
matrix), and the rest <cite>rank(X) - num_col_dims</cite>
dimensions are flattened to form the second
dimension of the final matrix (width of the matrix).
For example, suppose <cite>X</cite> is a 6-dimensional tensor
with a shape [2, 3, 4, 5, 6], and
<cite>x_num_col_dims</cite> = 3. Then, the flattened matrix
will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
By default, <cite>x_num_col_dims</cite> is set to 1.</li>
<li><strong>param_attr</strong> (<em>ParamAttr|list</em>) &#8211; The parameter attribute for learnable
parameters/weights of the fully connected
layer.</li>
<li><strong>param_initializer</strong> (<em>ParamAttr|list</em>) &#8211; The initializer used for the
weight/parameter. If set None,
XavierInitializer() will be used.</li>
<li><strong>bias_attr</strong> (<em>ParamAttr|list</em>) &#8211; The parameter attribute for the bias parameter
for this layer. If set None, no bias will be
added to the output units.</li>
<li><strong>bias_initializer</strong> (<em>ParamAttr|list</em>) &#8211; The initializer used for the bias.
If set None, then ConstantInitializer()
will be used.</li>
<li><strong>act</strong> (<em>str</em>) &#8211; Activation to be applied to the output of the fully connected
layer.</li>
<li><strong>name</strong> (<em>str</em>) &#8211; Name/alias of the fully connected layer.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The output tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first">Variable</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><code class="xref py py-exc docutils literal"><span class="pre">ValueError</span></code> &#8211; If rank of the input tensor is less than 2.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;data&quot;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s2">&quot;float32&quot;</span><span class="p">)</span>
301 302 303
<span class="n">fc</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;tanh&quot;</span><span class="p">)</span>
</pre></div>
</div>
304 305
</dd></dl>

306 307 308
</div>
<div class="section" id="embedding">
<h2>embedding<a class="headerlink" href="#embedding" title="Permalink to this headline"></a></h2>
309 310
<dl class="function">
<dt>
311
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">embedding</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>is_sparse=False</em>, <em>param_attr=None</em>, <em>dtype='float32'</em><span class="sig-paren">)</span></dt>
312 313 314 315 316
<dd><p><strong>Embedding Layer</strong></p>
<p>This layer is used to lookup a vector of IDs, provided by <em>input</em>, in a lookup table.
The result of this lookup is the embedding of each ID in the <em>input</em>.</p>
<p>All the input variables are passed in as local variables to the LayerHelper
constructor.</p>
317 318 319 320
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
321 322
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; Input to the function</li>
323
<li><strong>size</strong> (<em>tuple|list|None</em>) &#8211; Shape of the look up table parameter</li>
324 325 326
<li><strong>is_sparse</strong> (<em>bool</em>) &#8211; Boolean flag that specifying whether the input is sparse</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) &#8211; Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) &#8211; The type of data : float32, float_16, int etc</li>
327 328 329
</ul>
</td>
</tr>
330 331 332 333 334 335
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the embeddings of the                   supplied inputs.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
336 337
</tbody>
</table>
338 339 340 341 342
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;ids&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">fc</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
</pre></div>
</div>
343 344
</dd></dl>

345 346 347
</div>
<div class="section" id="dynamic-lstm">
<h2>dynamic_lstm<a class="headerlink" href="#dynamic-lstm" title="Permalink to this headline"></a></h2>
348 349
<dl class="function">
<dt>
350
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">dynamic_lstm</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_peepholes=True</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>cell_activation='tanh'</em>, <em>candidate_activation='tanh'</em>, <em>dtype='float32'</em><span class="sig-paren">)</span></dt>
351 352
<dd></dd></dl>

353 354 355
</div>
<div class="section" id="data">
<h2>data<a class="headerlink" href="#data" title="Permalink to this headline"></a></h2>
356 357
<dl class="function">
<dt>
358
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">data</code><span class="sig-paren">(</span><em>name</em>, <em>shape</em>, <em>append_batch_size=True</em>, <em>dtype='float32'</em>, <em>lod_level=0</em>, <em>type=VarType.LOD_TENSOR</em>, <em>stop_gradient=True</em><span class="sig-paren">)</span></dt>
359 360 361 362 363 364 365
<dd><p><strong>Data Layer</strong></p>
<p>This function takes in the input and based on whether data has
to be returned back as a minibatch, it creates the global variable using
the helper functions. The global variables can be accessed by all the
following operations and layers in the graph.</p>
<p>All the input variables of this function are passed in as local variables
to the LayerHelper constructor.</p>
366 367 368 369
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
370 371 372 373 374 375
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>str</em>) &#8211; The name/alias of the function</li>
<li><strong>shape</strong> (<em>list</em>) &#8211; Tuple declaring the shape.</li>
<li><strong>append_batch_size</strong> (<em>bool</em>) &#8211; Whether or not to append the data as a batch.</li>
<li><strong>dtype</strong> (<em>int|float</em>) &#8211; The type of data : float32, float_16, int etc</li>
<li><strong>type</strong> (<em>VarType</em>) &#8211; The output type. By default it is LOD_TENSOR.</li>
376
<li><strong>lod_level</strong> (<em>int</em>) &#8211; The LoD Level. 0 means the input data is not a sequence.</li>
377 378 379
<li><strong>main_program</strong> (<em>Program</em>) &#8211; Name of the main program that calls this</li>
<li><strong>startup_program</strong> (<em>Program</em>) &#8211; Name of the startup program</li>
<li><strong>stop_gradient</strong> (<em>bool</em>) &#8211; A boolean that mentions whether gradient should flow.</li>
380 381 382
</ul>
</td>
</tr>
383 384 385 386 387 388
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The global variable that gives access to the data.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
389 390
</tbody>
</table>
391 392 393 394
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">784</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
</pre></div>
</div>
395 396
</dd></dl>

397 398 399
</div>
<div class="section" id="mean">
<h2>mean<a class="headerlink" href="#mean" title="Permalink to this headline"></a></h2>
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">mean</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Mean Operator.</p>
<p>Out is a scalar which is the mean of all elements in X.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; The input of mean op
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The output of mean op</td>
</tr>
</tbody>
</table>
</dd></dl>

418 419 420
</div>
<div class="section" id="mul">
<h2>mul<a class="headerlink" href="#mul" title="Permalink to this headline"></a></h2>
421 422 423 424
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">mul</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Mul Operator.</p>
425
<p>This operator is used to perform matrix multiplication for input $X$ and $Y$.</p>
426
<p>The equation is:</p>
427
<p>$$Out = X * Y$$</p>
428 429
<p>Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.</p>
430 431 432 433 434
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
435
<li><strong>x</strong> &#8211; (Tensor), The first input tensor of mul op.
436
Duplicable: False  Optional: False</li>
437
<li><strong>y</strong> &#8211; (Tensor), The second input tensor of mul op.
438
Duplicable: False  Optional: False</li>
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
<li><strong>x_num_col_dims</strong> (<em>INT</em>) &#8211; (int, default 1), The mul_op can take tensors with more than two
dimensions as its inputs. If the input $X$ is a tensor with more
than two dimensions, $X$ will be flattened into a two-dimensional
matrix first. The flattening rule is: the first <cite>num_col_dims</cite>
will be flattened to form the first dimension of the final matrix
(the height of the matrix), and the rest <cite>rank(X) - num_col_dims</cite>
dimensions are flattened to form the second dimension of the final
matrix (the width of the matrix). As a result, height of the
flattened matrix is equal to the product of $X$&#8217;s first
<cite>x_num_col_dims</cite> dimensions&#8217; sizes, and width of the flattened
matrix is equal to the product of $X$&#8217;s last <cite>rank(x) - num_col_dims</cite>
dimensions&#8217; size. For example, suppose $X$ is a 6-dimensional
tensor with the shape [2, 3, 4, 5, 6], and <cite>x_num_col_dims</cite> = 3.
Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
[24, 30].</li>
<li><strong>y_num_col_dims</strong> (<em>INT</em>) &#8211; (int, default 1), The mul_op can take tensors with more than two,
dimensions as its inputs. If the input $Y$ is a tensor with more
than two dimensions, $Y$ will be flattened into a two-dimensional
matrix first. The attribute <cite>y_num_col_dims</cite> determines how $Y$ is
flattened. See comments of <cite>x_num_col_dims</cite> for more details.</li>
459 460 461
</ul>
</td>
</tr>
462
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(Tensor), The output tensor of mul op.</p>
463 464 465 466 467 468
</td>
</tr>
</tbody>
</table>
</dd></dl>

469 470 471
</div>
<div class="section" id="elementwise-add">
<h2>elementwise_add<a class="headerlink" href="#elementwise-add" title="Permalink to this headline"></a></h2>
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_add</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Add Operator.</p>
<p>The equation is:</p>
<p>$Out = X + Y$</p>
<p>X is a tensor of any dimension and the dimensions of tensor Y must be smaller than
or equal to the dimensions of X.</p>
<p>There are two cases for this operator:
1. The shape of Y is same with X;
2. The shape of Y is a subset of X.</p>
<p>For case 2:
Y will be broadcasted to match the shape of X and axis should be
the starting dimension index for broadcasting Y onto X.</p>
<p class="rubric">example</p>
<p>shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0</p>
<p>Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor) The first input tensor of elementwise op
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor) The second input tensor of elementwise op
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1) The starting dimension index for broadcasting Y onto X</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of elementwise op</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

514 515 516
</div>
<div class="section" id="elementwise-div">
<h2>elementwise_div<a class="headerlink" href="#elementwise-div" title="Permalink to this headline"></a></h2>
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_div</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Div Operator.</p>
<p>The equation is:</p>
<p>$Out = X / Y$</p>
<p>X is a tensor of any dimension and the dimensions of tensor Y must be smaller than
or equal to the dimensions of X.</p>
<p>There are two cases for this operator:
1. The shape of Y is same with X;
2. The shape of Y is a subset of X.</p>
<p>For case 2:
Y will be broadcasted to match the shape of X and axis should be
the starting dimension index for broadcasting Y onto X.</p>
<p class="rubric">example</p>
<p>shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0</p>
<p>Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor) The first input tensor of elementwise op
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor) The second input tensor of elementwise op
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1) The starting dimension index for broadcasting Y onto X</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of elementwise op</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

559 560 561
</div>
<div class="section" id="dropout">
<h2>dropout<a class="headerlink" href="#dropout" title="Permalink to this headline"></a></h2>
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">dropout</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Dropout Operator.</p>
<p>Dropout refers to randomly dropping out units in a nerual network. It is a
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
the given dropout probability) the outputs of some units to zero, while others
are set equal to their corresponding inputs.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; The input of dropout op.
Duplicable: False  Optional: False</li>
<li><strong>dropout_prob</strong> (<em>FLOAT</em>) &#8211; Probability of setting units to zero.</li>
<li><strong>is_test</strong> (<em>BOOLEAN</em>) &#8211; True if in test phase.</li>
<li><strong>seed</strong> (<em>INT</em>) &#8211; Dropout random seed.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output of dropout op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

591 592 593
</div>
<div class="section" id="reshape">
<h2>reshape<a class="headerlink" href="#reshape" title="Permalink to this headline"></a></h2>
594 595 596 597 598 599 600 601 602 603
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reshape</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Reshape Operator.</p>
<p>Reshape Input(X) into the shape specified by Attr(shape).</p>
<p>An example:
Given a 2-D tensor X with 2 rows and 2 columns</p>
<blockquote>
<div>[[1, 2], [3, 4]]</div></blockquote>
<p>and target shape = [1, 4], the reshape operator will transform
604
the tensor X into a 2-D tensor:</p>
605
<blockquote>
606
<div>[[1, 2, 3, 4]]</div></blockquote>
607 608 609
<p>One dimension in the target shape can be set -1, representing that its
size is unknown. In this case, the real dimension will be infered from
the original shape of Input(X) and other dimensions in the target shape.</p>
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; The input tensor of reshape operator.
Duplicable: False  Optional: False</li>
<li><strong>shape</strong> (<em>INTS</em>) &#8211; (vector&lt;int&gt;) Target shape of reshape operator.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output tensor of reshape operator.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

628 629 630
</div>
<div class="section" id="sigmoid">
<h2>sigmoid<a class="headerlink" href="#sigmoid" title="Permalink to this headline"></a></h2>
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sigmoid</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Sigmoid Activation Operator</p>
<p>$$y = frac{1}{1 + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; Input of Sigmoid operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Output of Sigmoid operator</td>
</tr>
</tbody>
</table>
</dd></dl>

649 650 651
</div>
<div class="section" id="scale">
<h2>scale<a class="headerlink" href="#scale" title="Permalink to this headline"></a></h2>
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">scale</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Scale operator</p>
<p>$$Out = scale*X$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor) Input tensor of scale operator.
Duplicable: False  Optional: False</li>
<li><strong>scale</strong> (<em>FLOAT</em>) &#8211; (float, default 0)The scaling factor of the scale operator.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(Tensor) Output tensor of scale operator.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

675 676 677
</div>
<div class="section" id="id1">
<h2>reshape<a class="headerlink" href="#id1" title="Permalink to this headline"></a></h2>
678 679 680 681 682 683 684 685 686 687
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reshape</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Reshape Operator.</p>
<p>Reshape Input(X) into the shape specified by Attr(shape).</p>
<p>An example:
Given a 2-D tensor X with 2 rows and 2 columns</p>
<blockquote>
<div>[[1, 2], [3, 4]]</div></blockquote>
<p>and target shape = [1, 4], the reshape operator will transform
688
the tensor X into a 2-D tensor:</p>
689
<blockquote>
690
<div>[[1, 2, 3, 4]]</div></blockquote>
691 692 693
<p>One dimension in the target shape can be set -1, representing that its
size is unknown. In this case, the real dimension will be infered from
the original shape of Input(X) and other dimensions in the target shape.</p>
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; The input tensor of reshape operator.
Duplicable: False  Optional: False</li>
<li><strong>shape</strong> (<em>INTS</em>) &#8211; (vector&lt;int&gt;) Target shape of reshape operator.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The output tensor of reshape operator.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

712 713 714
</div>
<div class="section" id="transpose">
<h2>transpose<a class="headerlink" href="#transpose" title="Permalink to this headline"></a></h2>
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">transpose</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Transpose Operator.</p>
<p>The input tensor will be permuted according to the axis values given.
The op functions similar to how numpy.transpose works in python.
For example:</p>
<blockquote>
<div><p>&gt;&gt; input = numpy.arange(6).reshape((2,3))
&gt;&gt; input
array([[0, 1, 2],</p>
<blockquote>
<div>[3, 4, 5]])</div></blockquote>
<p>&gt;&gt; axis = [1, 0]
&gt;&gt; output = input.transpose(axis)
&gt;&gt; output
array([[0, 3],</p>
<blockquote>
<div><dl class="docutils">
<dt>[1, 4],</dt>
<dd>[2, 5]])</dd>
</dl>
</div></blockquote>
</div></blockquote>
<p>So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor)The input tensor, tensors with rank at most 6 are supported
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INTS</em>) &#8211; (vector&lt;int&gt;)A list of values, and the size of the list should be the same with the input tensor rank, the tensor will permute the axes according the the values given</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">(Tensor)The output tensor</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

759 760 761 762 763 764
</div>
<div class="section" id="sigmoid-cross-entropy-with-logits">
<h2>sigmoid_cross_entropy_with_logits<a class="headerlink" href="#sigmoid-cross-entropy-with-logits" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="cast">
<h2>cast<a class="headerlink" href="#cast" title="Permalink to this headline"></a></h2>
765 766
<dl class="function">
<dt>
767
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cast</code><span class="sig-paren">(</span><em>x</em>, <em>dtype</em><span class="sig-paren">)</span></dt>
768 769 770 771
<dd><p>This function takes in the input with input_dtype
and casts it to the output_dtype as the output.</p>
</dd></dl>

772 773 774
</div>
<div class="section" id="concat">
<h2>concat<a class="headerlink" href="#concat" title="Permalink to this headline"></a></h2>
775 776
<dl class="function">
<dt>
777 778 779
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">concat</code><span class="sig-paren">(</span><em>input</em>, <em>axis=0</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Concat</strong></p>
<p>This function concatenates the input along the axis mentioned
780
and returns that as the output.</p>
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>list</em>) &#8211; List of tensors to be concatenated</li>
<li><strong>axis</strong> (<em>int</em>) &#8211; Integer axis along which the tensors will be concatenated</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Output variable of the concatenation</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
800 801
</dd></dl>

802 803 804
</div>
<div class="section" id="sums">
<h2>sums<a class="headerlink" href="#sums" title="Permalink to this headline"></a></h2>
805 806
<dl class="function">
<dt>
807
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sums</code><span class="sig-paren">(</span><em>input</em>, <em>out=None</em><span class="sig-paren">)</span></dt>
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
<dd><p>This function performs the sum operation on the input and returns the
result as the output.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>input</strong> (<em>Variable|list</em>) &#8211; The input tensor that has the elements
that need to be summed up.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><dl class="docutils">
<dt>The tensor type variable that has the sum of input</dt>
<dd>written to it.</dd>
</dl>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
828 829
</dd></dl>

830 831 832
</div>
<div class="section" id="linear-chain-crf">
<h2>linear_chain_crf<a class="headerlink" href="#linear-chain-crf" title="Permalink to this headline"></a></h2>
833 834
<dl class="function">
<dt>
835
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">linear_chain_crf</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>param_attr=None</em><span class="sig-paren">)</span></dt>
836 837
<dd></dd></dl>

838 839 840
</div>
<div class="section" id="assign">
<h2>assign<a class="headerlink" href="#assign" title="Permalink to this headline"></a></h2>
841 842
<dl class="function">
<dt>
843
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">embedding</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>is_sparse=False</em>, <em>param_attr=None</em>, <em>dtype='float32'</em><span class="sig-paren">)</span></dt>
844 845 846 847 848
<dd><p><strong>Embedding Layer</strong></p>
<p>This layer is used to lookup a vector of IDs, provided by <em>input</em>, in a lookup table.
The result of this lookup is the embedding of each ID in the <em>input</em>.</p>
<p>All the input variables are passed in as local variables to the LayerHelper
constructor.</p>
849 850 851 852
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
853 854
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; Input to the function</li>
855
<li><strong>size</strong> (<em>tuple|list|None</em>) &#8211; Shape of the look up table parameter</li>
856 857 858
<li><strong>is_sparse</strong> (<em>bool</em>) &#8211; Boolean flag that specifying whether the input is sparse</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) &#8211; Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) &#8211; The type of data : float32, float_16, int etc</li>
859 860 861
</ul>
</td>
</tr>
862 863 864 865 866 867
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the embeddings of the                   supplied inputs.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
868 869
</tbody>
</table>
870 871 872 873 874
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;ids&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">fc</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
</pre></div>
</div>
875 876
</dd></dl>

877 878 879
</div>
<div class="section" id="split-lod-tensor">
<h2>split_lod_tensor<a class="headerlink" href="#split-lod-tensor" title="Permalink to this headline"></a></h2>
880 881
<dl class="function">
<dt>
882
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">split_lod_tensor</code><span class="sig-paren">(</span><em>input</em>, <em>mask</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
883 884
<dd></dd></dl>

885 886 887
</div>
<div class="section" id="merge-lod-tensor">
<h2>merge_lod_tensor<a class="headerlink" href="#merge-lod-tensor" title="Permalink to this headline"></a></h2>
888 889
<dl class="function">
<dt>
890
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">merge_lod_tensor</code><span class="sig-paren">(</span><em>in_true</em>, <em>in_false</em>, <em>x</em>, <em>mask</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
891 892
<dd></dd></dl>

893 894 895
</div>
<div class="section" id="cos-sim">
<h2>cos_sim<a class="headerlink" href="#cos-sim" title="Permalink to this headline"></a></h2>
896 897 898 899 900 901 902
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cos_sim</code><span class="sig-paren">(</span><em>X</em>, <em>Y</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function performs the cosine similarity between two tensors
X and Y and returns that as the output.</p>
</dd></dl>

903 904 905
</div>
<div class="section" id="cross-entropy">
<h2>cross_entropy<a class="headerlink" href="#cross-entropy" title="Permalink to this headline"></a></h2>
906 907 908 909 910 911
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function computes cross_entropy using the input and label.</p>
</dd></dl>

912 913 914
</div>
<div class="section" id="square-error-cost">
<h2>square_error_cost<a class="headerlink" href="#square-error-cost" title="Permalink to this headline"></a></h2>
915 916 917 918 919 920 921
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">square_error_cost</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This functions returns the squared error cost using the input and label.
The output is appending the op to do the above.</p>
</dd></dl>

922 923 924
</div>
<div class="section" id="accuracy">
<h2>accuracy<a class="headerlink" href="#accuracy" title="Permalink to this headline"></a></h2>
925 926 927 928 929 930 931
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">accuracy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>k=1</em>, <em>correct=None</em>, <em>total=None</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.</p>
</dd></dl>

932 933 934
</div>
<div class="section" id="sequence-conv">
<h2>sequence_conv<a class="headerlink" href="#sequence-conv" title="Permalink to this headline"></a></h2>
935 936
<dl class="function">
<dt>
937
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_conv</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size=3</em>, <em>filter_stride=1</em>, <em>padding=None</em>, <em>bias_attr=None</em>, <em>param_attr=None</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
938 939 940 941 942
<dd><p>This function creates the op for sequence_conv, using the inputs and
other convolutional configurations for the filters and stride as given
in the input parameters to the function.</p>
</dd></dl>

943 944 945
</div>
<div class="section" id="conv2d">
<h2>conv2d<a class="headerlink" href="#conv2d" title="Permalink to this headline"></a></h2>
946 947
<dl class="function">
<dt>
948
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">conv2d</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>stride=None</em>, <em>padding=None</em>, <em>groups=None</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
949 950 951 952 953 954 955
<dd><p>This function creates the op for a 2-dimensional Convolution.
This is performed using the parameters of filters(size, dimensionality etc)
, stride and other configurations for a Convolution operation.
This funciton can also append an activation on top of the
conv-2d output, if mentioned in the input parameters.</p>
</dd></dl>

956 957 958
</div>
<div class="section" id="sequence-pool">
<h2>sequence_pool<a class="headerlink" href="#sequence-pool" title="Permalink to this headline"></a></h2>
959 960 961 962
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_pool</code><span class="sig-paren">(</span><em>input</em>, <em>pool_type</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function add the operator for sequence pooling.
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
It pools features of all time-steps of each instance, and is applied
on top of the input using pool_type mentioned in the parameters.</p>
<p>It supports four pool_type:</p>
<ul class="simple">
<li>average: <span class="math">\(Out[i] = \frac{\sum_i X_i}{N}\)</span></li>
<li>sum:     <span class="math">\(Out[i] = \sum_jX_{ij}\)</span></li>
<li>sqrt:    <span class="math">\(Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}\)</span></li>
<li>max:     <span class="math">\(Out[i] = max(X_i)\)</span></li>
</ul>
<div class="highlight-text"><div class="highlight"><pre><span></span>x is a 1-level LoDTensor:
  x.lod = [[0, 2, 5, 7]]
  x.data = [1, 3, 2, 4, 6, 5, 1]
  x.dims = [7, 1]

then output is a Tensor:
  out.dim = [3, 1]
  with condition len(x.lod[-1]) - 1 == out.dims[0]

for different pool_type:
  average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
  sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
  sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
             6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
  max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>variable</em>) &#8211; The input variable which is a LoDTensor.</li>
<li><strong>pool_type</strong> (<em>string</em>) &#8211; The pooling type of sequence_pool.
It supports average, sum, sqrt and max.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">The sequence pooling variable which is a Tensor.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">avg_x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_pool</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">pool_type</span><span class="o">=</span><span class="s1">&#39;average&#39;</span><span class="p">)</span>
<span class="n">sum_x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_pool</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">pool_type</span><span class="o">=</span><span class="s1">&#39;sum&#39;</span><span class="p">)</span>
<span class="n">sqrt_x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_pool</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">pool_type</span><span class="o">=</span><span class="s1">&#39;sqrt&#39;</span><span class="p">)</span>
<span class="n">max_x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_pool</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">pool_type</span><span class="o">=</span><span class="s1">&#39;max&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="sequence-first-step">
<h2>sequence_first_step<a class="headerlink" href="#sequence-first-step" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_first_step</code><span class="sig-paren">(</span><em>input</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This funciton get the first step of sequence.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>x is a 1-level LoDTensor:
  x.lod = [[0, 2, 5, 7]]
  x.data = [1, 3, 2, 4, 6, 5, 1]
  x.dims = [7, 1]

then output is a Tensor:
  out.dim = [3, 1]
  with condition len(x.lod[-1]) - 1 == out.dims[0]
  out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>input</strong> (<em>variable</em>) &#8211; The input variable which is a LoDTensor.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The sequence&#8217;s first step variable which is a Tensor.</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">x_first_step</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_first_step</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="sequence-last-step">
<h2>sequence_last_step<a class="headerlink" href="#sequence-last-step" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_last_step</code><span class="sig-paren">(</span><em>input</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This funciton get the last step of sequence.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>x is a 1-level LoDTensor:
  x.lod = [[0, 2, 5, 7]]
  x.data = [1, 3, 2, 4, 6, 5, 1]
  x.dims = [7, 1]

then output is a Tensor:
  out.dim = [3, 1]
  with condition len(x.lod[-1]) - 1 == out.dims[0]
  out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>input</strong> (<em>variable</em>) &#8211; The input variable which is a LoDTensor.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The sequence&#8217;s last step variable which is a Tensor.</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">x_last_step</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">sequence_last_step</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
1086 1087
</dd></dl>

1088 1089 1090
</div>
<div class="section" id="pool2d">
<h2>pool2d<a class="headerlink" href="#pool2d" title="Permalink to this headline"></a></h2>
1091 1092
<dl class="function">
<dt>
1093
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">pool2d</code><span class="sig-paren">(</span><em>input</em>, <em>pool_size</em>, <em>pool_type</em>, <em>pool_stride=None</em>, <em>pool_padding=None</em>, <em>global_pooling=False</em><span class="sig-paren">)</span></dt>
1094 1095 1096 1097
<dd><p>This function adds the operator for pooling in 2 dimensions, using the
pooling configurations mentioned in input parameters.</p>
</dd></dl>

1098 1099 1100
</div>
<div class="section" id="batch-norm">
<h2>batch_norm<a class="headerlink" href="#batch-norm" title="Permalink to this headline"></a></h2>
1101 1102
<dl class="function">
<dt>
1103
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">batch_norm</code><span class="sig-paren">(</span><em>input</em>, <em>act=None</em>, <em>is_test=False</em>, <em>momentum=0.9</em>, <em>epsilon=1e-05</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>data_layout='NCHW'</em><span class="sig-paren">)</span></dt>
1104 1105 1106 1107
<dd><p>This function helps create an operator to implement
the BatchNorm layer using the configurations from the input parameters.</p>
</dd></dl>

1108 1109 1110
</div>
<div class="section" id="beam-search-decode">
<h2>beam_search_decode<a class="headerlink" href="#beam-search-decode" title="Permalink to this headline"></a></h2>
1111 1112
<dl class="function">
<dt>
1113
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">beam_search_decode</code><span class="sig-paren">(</span><em>ids</em>, <em>scores</em><span class="sig-paren">)</span></dt>
1114 1115
<dd></dd></dl>

1116 1117 1118
</div>
<div class="section" id="lod-rank-table">
<h2>lod_rank_table<a class="headerlink" href="#lod-rank-table" title="Permalink to this headline"></a></h2>
1119 1120
<dl class="function">
<dt>
1121
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">lod_rank_table</code><span class="sig-paren">(</span><em>x</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
1122 1123 1124 1125
<dd><p>This function creates an operator for creating a LOD_RANK_TABLE
using the input x.</p>
</dd></dl>

1126 1127 1128
</div>
<div class="section" id="max-sequence-len">
<h2>max_sequence_len<a class="headerlink" href="#max-sequence-len" title="Permalink to this headline"></a></h2>
1129 1130
<dl class="function">
<dt>
1131
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">max_sequence_len</code><span class="sig-paren">(</span><em>rank_table</em><span class="sig-paren">)</span></dt>
1132 1133 1134 1135
<dd><p>This function creates an operator to calculate the length of
max seqence through input rank_table(should be a lod_rank_table)</p>
</dd></dl>

1136 1137 1138
</div>
<div class="section" id="topk">
<h2>topk<a class="headerlink" href="#topk" title="Permalink to this headline"></a></h2>
1139 1140
<dl class="function">
<dt>
1141
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">topk</code><span class="sig-paren">(</span><em>input</em>, <em>k</em><span class="sig-paren">)</span></dt>
1142 1143
<dd></dd></dl>

1144 1145 1146
</div>
<div class="section" id="lod-tensor-to-array">
<h2>lod_tensor_to_array<a class="headerlink" href="#lod-tensor-to-array" title="Permalink to this headline"></a></h2>
1147 1148
<dl class="function">
<dt>
1149
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">lod_tensor_to_array</code><span class="sig-paren">(</span><em>x</em>, <em>table</em><span class="sig-paren">)</span></dt>
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
<dd><dl class="docutils">
<dt>This function performs the operation that converts an LOD_Tensor to</dt>
<dd>an array.</dd>
</dl>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable|list</em>) &#8211; The tensor that needs to be converted to an array.</li>
<li><strong>table</strong> (<em>ParamAttr|list</em>) &#8211; The variable that stores the level of lod
which is ordered by sequence length in
descending order.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><dl class="docutils">
<dt>The variable of type array that has been converted from a</dt>
<dd><p class="first last">tensor.</p>
</dd>
</dl>
</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">])</span>
<span class="n">table</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lod_rank_table</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">array</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lod_tensor_to_array</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">table</span><span class="p">)</span>
</pre></div>
</div>
1185 1186
</dd></dl>

1187 1188 1189
</div>
<div class="section" id="array-to-lod-tensor">
<h2>array_to_lod_tensor<a class="headerlink" href="#array-to-lod-tensor" title="Permalink to this headline"></a></h2>
1190 1191
<dl class="function">
<dt>
1192
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_to_lod_tensor</code><span class="sig-paren">(</span><em>x</em>, <em>table</em><span class="sig-paren">)</span></dt>
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
<dd><dl class="docutils">
<dt>This function performs the operations that converts an array to</dt>
<dd>an LOD_Tensor.</dd>
</dl>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable|list</em>) &#8211; The array that needs to be converted to a tensor.</li>
<li><strong>table</strong> (<em>ParamAttr|list</em>) &#8211; The variable that stores the level of lod
which is ordered by sequence length in
descending order.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><dl class="docutils">
<dt>The variable of type tensor that has been converted</dt>
<dd><p class="first last">from an array.</p>
</dd>
</dl>
</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">])</span>
<span class="n">table</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lod_rank_table</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">array</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lod_tensor_to_array</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">table</span><span class="p">)</span>
<span class="n">lod_tensor</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">array_to_lod_tensor</span><span class="p">(</span><span class="n">array</span><span class="p">,</span> <span class="n">table</span><span class="p">)</span>
</pre></div>
</div>
1229 1230
</dd></dl>

1231 1232 1233
</div>
<div class="section" id="fill-constant">
<h2>fill_constant<a class="headerlink" href="#fill-constant" title="Permalink to this headline"></a></h2>
1234 1235
<dl class="function">
<dt>
1236
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">fill_constant</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>value</em>, <em>out=None</em><span class="sig-paren">)</span></dt>
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
<dd><p><strong>fill_constant</strong></p>
<p>This function creates a tensor of specified <em>shape</em> and
<em>dtype</em>, and initializes this with a constant supplied in <em>value</em>.</p>
<p>It also sets <em>stop_gradient</em> to True.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>shape</strong> (<em>tuple|list|None</em>) &#8211; Shape of output tensor</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) &#8211; Data type of output tensor</li>
<li><strong>value</strong> (<em>float</em>) &#8211; Constant value to initialize the output tensor</li>
<li><strong>out</strong> (<em>Variable</em>) &#8211; Output Variable to initialize</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the output</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fill_constant</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;int64&#39;</span><span class="p">)</span>
</pre></div>
</div>
1265 1266
</dd></dl>

1267 1268 1269
</div>
<div class="section" id="fill-constant-batch-size-like">
<h2>fill_constant_batch_size_like<a class="headerlink" href="#fill-constant-batch-size-like" title="Permalink to this headline"></a></h2>
1270 1271
<dl class="function">
<dt>
1272
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">fill_constant_batch_size_like</code><span class="sig-paren">(</span><em>input</em>, <em>shape</em>, <em>dtype</em>, <em>value</em>, <em>input_dim_idx=0</em>, <em>output_dim_idx=0</em><span class="sig-paren">)</span></dt>
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
<dd><p><strong>fill_constant_batch_size_like</strong></p>
<p>This function creates a tensor of specified <em>shape</em>, <em>dtype</em> and batch size,
and initializes this with a constant supplied in <em>value</em>. The batch size is
obtained from the <cite>input</cite> tensor.</p>
<p>It also sets <em>stop_gradient</em> to True.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; Tensor whose dimensions will be used to get batch size</li>
<li><strong>shape</strong> (<em>tuple|list|None</em>) &#8211; Shape of output tensor</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) &#8211; Data type of output tensor</li>
<li><strong>value</strong> (<em>float</em>) &#8211; Constant value to initialize the output tensor</li>
<li><strong>input_dim_idx</strong> (<em>int</em>) &#8211; Index of input&#8217;s batch size dimension</li>
<li><strong>output_dim_idx</strong> (<em>int</em>) &#8211; Index of output&#8217;s batch size dimension</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the output</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fill_constant</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;int64&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>
1305

1306 1307 1308
</div>
<div class="section" id="ones">
<h2>ones<a class="headerlink" href="#ones" title="Permalink to this headline"></a></h2>
1309 1310
<dl class="function">
<dt>
1311
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ones</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em><span class="sig-paren">)</span></dt>
1312 1313 1314 1315
<dd><p>This function performs the same function as fill_constant() declared above
with the constant value being 1.0.</p>
</dd></dl>

1316 1317 1318
</div>
<div class="section" id="zeros">
<h2>zeros<a class="headerlink" href="#zeros" title="Permalink to this headline"></a></h2>
1319 1320
<dl class="function">
<dt>
1321
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">zeros</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em><span class="sig-paren">)</span></dt>
1322 1323 1324 1325
<dd><p>This function performs the same function as fill_constant() declared above
with the constant value being 0.0.</p>
</dd></dl>

1326 1327 1328
</div>
<div class="section" id="increment">
<h2>increment<a class="headerlink" href="#increment" title="Permalink to this headline"></a></h2>
1329 1330
<dl class="function">
<dt>
1331
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">increment</code><span class="sig-paren">(</span><em>x</em>, <em>value=1.0</em>, <em>in_place=True</em><span class="sig-paren">)</span></dt>
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
<dd><p>This function performs an operation that increments each value in the
input <span class="math">\(x\)</span> by an amount: <span class="math">\(value\)</span> as mentioned in the input
parameter. This operation is performed in-place by default.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable|list</em>) &#8211; The tensor that has the input values.</li>
<li><strong>value</strong> (<em>float</em>) &#8211; The amount by which the values should be incremented.</li>
<li><strong>in_place</strong> (<em>bool</em>) &#8211; If the increment should be performed in-place.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first"><dl class="docutils">
<dt>The tensor variable storing the transformation of</dt>
<dd><p class="first last">element-wise increment of each value in the input.</p>
</dd>
</dl>
</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;data&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">increment</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mf">3.0</span><span class="p">,</span> <span class="n">in_place</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
1364 1365
</dd></dl>

1366 1367 1368
</div>
<div class="section" id="array-write">
<h2>array_write<a class="headerlink" href="#array-write" title="Permalink to this headline"></a></h2>
1369 1370
<dl class="function">
<dt>
1371
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_write</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>array=None</em><span class="sig-paren">)</span></dt>
1372
<dd><p>This function performs the operation to write the data out as an
1373
LOD_TENSOR_ARRAY.</p>
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable|list</em>) &#8211; The input tensor from which the data will be read.</li>
<li><strong>i</strong> (<em>Variable|list</em>) &#8211; The subscript index in tensor array, that points the
place from which data will be read.</li>
<li><strong>array</strong> (<em>Variable|list</em>) &#8211; The data can be read into this variable if
this is assigned.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor type variable that has the data written to it.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
1396 1397
</dd></dl>

1398 1399 1400
</div>
<div class="section" id="create-array">
<h2>create_array<a class="headerlink" href="#create-array" title="Permalink to this headline"></a></h2>
1401 1402
<dl class="function">
<dt>
1403
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">create_array</code><span class="sig-paren">(</span><em>dtype</em><span class="sig-paren">)</span></dt>
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
<dd><p>This function creates an array of type <span class="math">\(LOD_TENSOR_ARRAY\)</span> using the
LayerHelper.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>dtype</strong> (<em>int|float</em>) &#8211; The data type of the elements in the array.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The tensor variable storing the elements of data type.</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">create_array</span><span class="p">(</span><span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>
1423

1424 1425 1426
</div>
<div class="section" id="less-than">
<h2>less_than<a class="headerlink" href="#less-than" title="Permalink to this headline"></a></h2>
1427 1428
<dl class="function">
<dt>
1429
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">less_than</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>cond=None</em>, <em>**ignored</em><span class="sig-paren">)</span></dt>
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
<dd><p><strong>Less than</strong></p>
<p>This layer returns the truth value of <span class="math">\(x &lt; y\)</span> elementwise.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable</em>) &#8211; First operand of <em>less_than</em></li>
<li><strong>y</strong> (<em>Variable</em>) &#8211; Second operand of <em>less_than</em></li>
<li><strong>cond</strong> (<em>Variable|None</em>) &#8211; Optional output variable to store the result of <em>less_than</em></li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The tensor variable storing the output of <em>less_than</em>.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">less</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">less_than</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">label</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">limit</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>
1456

1457 1458 1459
</div>
<div class="section" id="array-read">
<h2>array_read<a class="headerlink" href="#array-read" title="Permalink to this headline"></a></h2>
1460 1461
<dl class="function">
<dt>
1462
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_read</code><span class="sig-paren">(</span><em>array</em>, <em>i</em><span class="sig-paren">)</span></dt>
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
<dd><p>This function performs the operation to read the data in as an
LOD_TENSOR_ARRAY.
:param array: The input tensor that will be written to an array.
:type array: Variable|list
:param i: The subscript index in tensor array, that points the</p>
<blockquote>
<div>place where data will be written to.</div></blockquote>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">The tensor type variable that has the data written to it.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
1481 1482
</dd></dl>

1483 1484 1485
</div>
<div class="section" id="shrink-memory">
<h2>shrink_memory<a class="headerlink" href="#shrink-memory" title="Permalink to this headline"></a></h2>
1486 1487
<dl class="function">
<dt>
1488
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">shrink_memory</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>table</em><span class="sig-paren">)</span></dt>
1489 1490 1491 1492
<dd><p>This function creates an operator to shrink_rnn_memory using the RankTable
as mentioned in the input parameter.</p>
</dd></dl>

1493 1494 1495
</div>
<div class="section" id="array-length">
<h2>array_length<a class="headerlink" href="#array-length" title="Permalink to this headline"></a></h2>
1496 1497
<dl class="function">
<dt>
1498
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_length</code><span class="sig-paren">(</span><em>array</em><span class="sig-paren">)</span></dt>
1499
<dd><p>This function performs the operation to find the length of the input
1500
LOD_TENSOR_ARRAY.</p>
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>array</strong> (<em>LOD_TENSOR_ARRAY</em>) &#8211; The input array that will be used
to compute the length.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The length of the input LoDTensorArray.</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">Variable</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
1515 1516
</dd></dl>

1517 1518 1519
</div>
<div class="section" id="conv2d-transpose">
<h2>conv2d_transpose<a class="headerlink" href="#conv2d-transpose" title="Permalink to this headline"></a></h2>
1520 1521
<dl class="function">
<dt>
1522
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">conv2d_transpose</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>output_size=None</em>, <em>filter_size=None</em>, <em>padding=None</em>, <em>stride=None</em>, <em>dilation=None</em>, <em>param_attr=None</em><span class="sig-paren">)</span></dt>
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
<dd><p>The transpose of conv2d layer.</p>
<p>This layer is also known as deconvolution layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input image with [N, C, H, W] format.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; The number of filter. It is as same as the output
image channel.</li>
<li><strong>output_size</strong> (<em>int|tuple|None</em>) &#8211; The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). This
parameter only works when filter_size is None.</li>
<li><strong>filter_size</strong> (<em>int|tuple|None</em>) &#8211; The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.  None if use output size to
calculate filter_size</li>
<li><strong>padding</strong> (<em>int|tuple</em>) &#8211; The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding.</li>
<li><strong>stride</strong> (<em>int|tuple</em>) &#8211; The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride.</li>
1546 1547 1548
<li><strong>dilation</strong> (<em>int|tuple</em>) &#8211; The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation.</li>
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
<li><strong>param_attr</strong> &#8211; Parameter Attribute.</li>
<li><strong>main_program</strong> (<em>Program</em>) &#8211; the main program</li>
<li><strong>startup_program</strong> (<em>Program</em>) &#8211; the startup program</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">Output image.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

1565 1566 1567 1568 1569
</div>
<div class="section" id="sequence-expand">
<h2>sequence_expand<a class="headerlink" href="#sequence-expand" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
1570
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_expand</code><span class="sig-paren">(</span><em>x</em>, <em>y</em><span class="sig-paren">)</span></dt>
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
<dd><p>Sequence Expand Layer. This layer will expand the input variable <strong>x</strong>
according to LoD information of <strong>y</strong>. And the following examples will
explain how sequence_expand works:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>* Case 1
    x is a LoDTensor:
        x.lod = [[0,       2, 3],
                 [0, 1,    3, 4]]
        x.data = [a, b, c, d]
        x.dims = [4, 1]

    y is a LoDTensor:
        y.lod = [[0,    2,    4],
                 [0, 3, 6, 7, 8]]

    with condition len(y.lod[-1]) - 1 == x.dims[0]

    then output is a 2-level LoDTensor:
        out.lod = [[0,                2,    4],
                   [0,       3,       6, 7, 8]]
        out.data = [a, a, a, b, b, b, c, d]
        out.dims = [8, 1]

* Case 2
    x is a Tensor:
        x.data = [a, b, c]
        x.dims = [3, 1]

    y is a LoDTensor:
        y.lod = [[0, 2, 3, 6]]

    with condition len(y.lod[-1]) - 1 == x.dims[0]

    then output is a 1-level LoDTensor:
        out.lod = [[0,    2, 3,      6]]
        out.data = [a, a, b, c, c, c]
        out.dims = [6, 1]
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>y</strong> (<em>Variable</em>) &#8211; The input variable which is a LoDTensor.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The expanded variable which is a LoDTensor.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">],</span>
                 <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">lod_level</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">sequence_expand</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
</div>
<div class="section" id="lstm-unit">
<h2>lstm_unit<a class="headerlink" href="#lstm-unit" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">lstm_unit</code><span class="sig-paren">(</span><em>x_t</em>, <em>hidden_t_prev</em>, <em>cell_t_prev</em>, <em>forget_bias=0.0</em>, <em>param_attr=None</em>, <em>bias_attr=None</em><span class="sig-paren">)</span></dt>
<dd><p>Lstm unit layer. The equation of a lstm step is:</p>
<blockquote>
<div><div class="math">
\[ \begin{align}\begin{aligned}i_t &amp; = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)\\f_t &amp; = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)\\c_t &amp; = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)\\o_t &amp; = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)\\h_t &amp; = o_t tanh(c_t)\end{aligned}\end{align} \]</div>
</div></blockquote>
<p>The inputs of lstm unit includes <span class="math">\(x_t\)</span>, <span class="math">\(h_{t-1}\)</span> and
<span class="math">\(c_{t-1}\)</span>. The implementation separates the linear transformation
and non-linear transformation apart. Here, we take <span class="math">\(i_t\)</span> as an
example. The linear transformation is applied by calling a <cite>fc</cite> layer and
the equation is:</p>
<blockquote>
<div><div class="math">
\[L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i\]</div>
</div></blockquote>
<p>The non-linear transformation is applied by calling <cite>lstm_unit_op</cite> and the
equation is:</p>
<blockquote>
<div><div class="math">
\[i_t = \sigma(L_{i_t})\]</div>
</div></blockquote>
<p>This layer has two outputs including <span class="math">\(h_t\)</span> and <span class="math">\(o_t\)</span>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x_t</strong> (<em>Variable</em>) &#8211; The input value of current step.</li>
<li><strong>hidden_t_prev</strong> (<em>Variable</em>) &#8211; The hidden value of lstm unit.</li>
<li><strong>cell_t_prev</strong> (<em>Variable</em>) &#8211; The cell value of lstm unit.</li>
<li><strong>forget_bias</strong> (<em>float</em>) &#8211; The forget bias of lstm unit.</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) &#8211; The attributes of parameter weights, used to set
initializer, name etc.</li>
<li><strong>bias_attr</strong> (<em>ParamAttr</em>) &#8211; The attributes of bias weights, if not False,
bias weights will be created and be set to default value.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The hidden value and cell value of lstm unit.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first">tuple</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><code class="xref py py-exc docutils literal"><span class="pre">ValueError</span></code> &#8211; The ranks of <strong>x_t</strong>, <strong>hidden_t_prev</strong> and <strong>cell_t_prev</strong>                not be 2 or the 1st dimensions of <strong>x_t</strong>, <strong>hidden_t_prev</strong>                 and <strong>cell_t_prev</strong> not be the same.</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x_t</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x_t_data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">prev_hidden</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">prev_hidden_data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="n">prev_cell</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">prev_cell_data</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">30</span><span class="p">)</span>
<span class="n">hidden_value</span><span class="p">,</span> <span class="n">cell_value</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">lstm_unit</span><span class="p">(</span><span class="n">x_t</span><span class="o">=</span><span class="n">x_t</span><span class="p">,</span>
                                       <span class="n">hidden_t_prev</span><span class="o">=</span><span class="n">prev_hidden</span><span class="p">,</span>
                                       <span class="n">cell_t_prev</span><span class="o">=</span><span class="n">prev_cell</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
</div>
<div class="section" id="sequence-softmax">
<h2>sequence_softmax<a class="headerlink" href="#sequence-softmax" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_softmax</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Sequence Softmax Operator.</p>
<p>SequenceSoftmaxOp computes the softmax activation among all time-steps for each
sequence. The dimension of each time-step should be 1. Thus, the shape of
input Tensor can be either [N, 1] or [N], where N is the sum of the length
of all sequences.</p>
1712 1713 1714 1715 1716 1717
<p>The algorithm works as follows:</p>
<blockquote>
<div>for i-th sequence in a mini-batch:</div></blockquote>
<p>$$
Out(X[lod[i]:lod[i+1]], :) = frac{exp(X[lod[i]:lod[i+1], :])} {sum(exp(X[lod[i]:lod[i+1], :]))}
$$</p>
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
<p>For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
and N turns out to be 7.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> &#8211; (LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension of length 1.
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension of length 1.</td>
</tr>
</tbody>
</table>
</dd></dl>

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
</div>
<div class="section" id="reduce-sum">
<h2>reduce_sum<a class="headerlink" href="#reduce-sum" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reduce_sum</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em><span class="sig-paren">)</span></dt>
<dd><p>Computes the sum of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>dim</strong> (<em>int|None</em>) &#8211; The dimension along which the sum is performed. If
<code class="xref py py-attr docutils literal"><span class="pre">None</span></code>, sum all elements of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> and return a
Tensor variable with a single element, otherwise must be in the
range <span class="math">\([-rank(input), rank(input))\)</span>. If <span class="math">\(dim &lt; 0\)</span>,
the dimension to reduce is <span class="math">\(rank + dim\)</span>.</li>
<li><strong>keep_dim</strong> (<em>bool</em>) &#8211; Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> unless <code class="xref py py-attr docutils literal"><span class="pre">keep_dim</span></code> is true.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The reduced Tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># x is a Tensor variable with following elements:</span>
<span class="c1">#    [[0.2, 0.3, 0.5, 0.9]</span>
<span class="c1">#     [0.1, 0.2, 0.6, 0.7]]</span>
<span class="c1"># Each example is followed by the correspending output tensor.</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>  <span class="c1"># [3.5]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>  <span class="c1"># [0.3, 0.5, 1.1, 1.6]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>  <span class="c1"># [1.9, 1.6]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">keep_dim</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>  <span class="c1"># [[1.9], [1.6]]</span>
</pre></div>
</div>
</dd></dl>

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
</div>
<div class="section" id="reduce-mean">
<h2>reduce_mean<a class="headerlink" href="#reduce-mean" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reduce_mean</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em><span class="sig-paren">)</span></dt>
<dd><p>Computes the mean of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>dim</strong> (<em>int|None</em>) &#8211; The dimension along which the mean is computed. If
<code class="xref py py-attr docutils literal"><span class="pre">None</span></code>, compute the mean over all elements of <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>
and return a Tensor variable with a single element, otherwise
must be in the range <span class="math">\([-rank(input), rank(input))\)</span>. If
<span class="math">\(dim &lt; 0\)</span>, the dimension to reduce is <span class="math">\(rank + dim\)</span>.</li>
<li><strong>keep_dim</strong> (<em>bool</em>) &#8211; Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the <code class="xref py py-attr docutils literal"><span class="pre">input</span></code> unless <code class="xref py py-attr docutils literal"><span class="pre">keep_dim</span></code> is true.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The reduced Tensor variable.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># x is a Tensor variable with following elements:</span>
<span class="c1">#    [[0.2, 0.3, 0.5, 0.9]</span>
<span class="c1">#     [0.1, 0.2, 0.6, 0.7]]</span>
<span class="c1"># Each example is followed by the correspending output tensor.</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>  <span class="c1"># [0.4375]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>  <span class="c1"># [0.15, 0.25, 0.55, 0.8]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>  <span class="c1"># [0.475, 0.4]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">keep_dim</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>  <span class="c1"># [[0.475], [0.4]]</span>
</pre></div>
</div>
</dd></dl>

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="data_feeder.html" class="btn btn-neutral float-right" title="DataFeeder" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="../fluid.html" class="btn btn-neutral" title="Fluid" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>