evaluator.py 14.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dzhwinter 已提交
15
import warnings
D
Dong Zhihong 已提交
16
import numpy as np
武毅 已提交
17

18
import layers
Y
Yu Yang 已提交
19 20
from framework import Program, Variable, program_guard
import unique_name
21
from layer_helper import LayerHelper
22
from initializer import Constant
武毅 已提交
23

24 25 26
__all__ = [
    'Accuracy',
    'ChunkEvaluator',
27
    'EditDistance',
28
    'DetectionMAP',
29
]
Y
Yu Yang 已提交
30 31 32


def _clone_var_(block, var):
D
Dong Zhihong 已提交
33 34 35 36
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
37
        dtype=var.dtype,
D
Dong Zhihong 已提交
38 39 40 41 42
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


D
Dong Zhihong 已提交
43 44
class Evaluator(object):
    """
Y
Yu Yang 已提交
45
    Base Class for all evaluators
46

Y
Yu Yang 已提交
47
    Args:
48
        name(str): The name of evaluator. such as, "accuracy". Used for generate
Y
Yu Yang 已提交
49
            temporary variable name.
50
        main_program(Program, optional): The evaluator should be added to this
Y
Yu Yang 已提交
51
            main_program. Default default_main_program()
52
        startup_program(Program, optional):The parameter should be added to this
Y
Yu Yang 已提交
53
            startup_program. Default default_startup_program()
54

Y
Yu Yang 已提交
55
    Attributes:
56
        states(list): The list of state variables. states will be reset to zero
Y
Yu Yang 已提交
57
            when `reset` is invoked.
58
        metrics(list): The list of metrics variables. They will be calculate
Y
Yu Yang 已提交
59
            every mini-batch
D
Dong Zhihong 已提交
60
    """
武毅 已提交
61

D
Dong Zhihong 已提交
62
    def __init__(self, name, **kwargs):
D
dzhwinter 已提交
63 64 65
        warnings.warn(
            "The %s is deprecated, because maintain a modified program inside evaluator cause bug easily, please use fluid.metrics.%s instead."
            % (self.__class__.__name__, self.__class__.__name__), Warning)
Y
Yu Yang 已提交
66 67 68 69 70
        self.states = []
        self.metrics = []
        self.helper = LayerHelper(name, **kwargs)

    def reset(self, executor, reset_program=None):
D
Dong Zhihong 已提交
71
        """
Y
Yu Yang 已提交
72
        reset metric states at the begin of each pass/user specified batch
D
Dong Zhihong 已提交
73
        """
Y
Yu Yang 已提交
74 75 76
        if reset_program is None:
            reset_program = Program()

77 78 79 80 81 82
        with program_guard(main_program=reset_program):
            for var in self.states:
                assert isinstance(var, Variable)
                g_var = _clone_var_(reset_program.current_block(), var)
                layers.fill_constant(
                    shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var)
D
Dong Zhihong 已提交
83

Y
Yu Yang 已提交
84
        executor.run(reset_program)
85

Y
Yu Yang 已提交
86
    def eval(self, executor, eval_program=None):
D
Dong Zhihong 已提交
87
        """
Y
Yu Yang 已提交
88
        Evaluate the statistics merged by multiple mini-batches.
D
Dong Zhihong 已提交
89 90
        """
        raise NotImplementedError()
D
Dong Zhihong 已提交
91

Y
Yu Yang 已提交
92
    def create_state(self, suffix, dtype, shape):
武毅 已提交
93
        """
94 95
        Create state variable.

Y
Yu Yang 已提交
96
        NOTE: It is not a public API.
97

Y
Yu Yang 已提交
98
        Args:
99
            suffix(str): the state suffix.
100
            dtype(str|core.VarDesc.VarType): the state data type
101
            shape(tuple|list): the shape of state
Y
Yu Yang 已提交
102 103

        Returns: State variable
武毅 已提交
104

D
Dong Zhihong 已提交
105
        """
Y
Yu Yang 已提交
106
        state = self.helper.create_variable(
Y
Yu Yang 已提交
107
            name="_".join([unique_name.generate(self.helper.name), suffix]),
Y
Yu Yang 已提交
108 109 110 111 112
            persistable=True,
            dtype=dtype,
            shape=shape)
        self.states.append(state)
        return state
D
Dong Zhihong 已提交
113

D
Dong Zhihong 已提交
114

G
guosheng 已提交
115 116
class ChunkEvaluator(Evaluator):
    """
117 118
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
G
guosheng 已提交
119 120 121
    numbers.
    """

122 123 124 125 126 127 128 129
    def __init__(
            self,
            input,
            label,
            chunk_scheme,
            num_chunk_types,
            excluded_chunk_types=None, ):
        super(ChunkEvaluator, self).__init__("chunk_eval")
G
guosheng 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

        self.num_infer_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_infer_chunks')
        self.num_label_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_label_chunks')
        self.num_correct_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_correct_chunks')
        precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
            input=input,
            label=label,
            chunk_scheme=chunk_scheme,
            num_chunk_types=num_chunk_types,
145
            excluded_chunk_types=excluded_chunk_types, )
G
guosheng 已提交
146 147
        layers.sums(
            input=[self.num_infer_chunks, num_infer_chunks],
148
            out=self.num_infer_chunks)
G
guosheng 已提交
149 150
        layers.sums(
            input=[self.num_label_chunks, num_label_chunks],
151
            out=self.num_label_chunks)
G
guosheng 已提交
152 153
        layers.sums(
            input=[self.num_correct_chunks, num_correct_chunks],
154
            out=self.num_correct_chunks)
G
guosheng 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

        self.metrics.extend([precision, recall, f1_score])

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
            eval_program,
            fetch_list=[_clone_var_(block, state) for state in self.states])
        num_infer_chunks = num_infer_chunks[0]
        num_label_chunks = num_label_chunks[0]
        num_correct_chunks = num_correct_chunks[0]
        precision = float(
            num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
        recall = float(
            num_correct_chunks) / num_label_chunks if num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if num_correct_chunks else 0
        return np.array(
            [precision], dtype='float32'), np.array(
                [recall], dtype='float32'), np.array(
                    [f1_score], dtype='float32')
178 179 180 181


class EditDistance(Evaluator):
    """
W
wanghaoshuang 已提交
182
    Accumulate edit distance sum and sequence number from mini-batches and
183
    compute the average edit_distance and instance error of all batches.
W
wanghaoshuang 已提交
184 185

    Args:
W
wanghaoshuang 已提交
186
        input: the sequences predicted by network.
W
wanghaoshuang 已提交
187 188 189 190 191 192 193 194 195 196 197 198
        label: the target sequences which must has same sequence count
        with input.
        ignored_tokens(list of int): Tokens that should be removed before
        calculating edit distance.

    Example:

        exe = fluid.executor(place)
        distance_evaluator = fluid.Evaluator.EditDistance(input, label)
        for epoch in PASS_NUM:
            distance_evaluator.reset(exe)
            for data in batches:
W
wanghaoshuang 已提交
199
                loss = exe.run(fetch_list=[cost])
200
            distance, instance_error = distance_evaluator.eval(exe)
W
wanghaoshuang 已提交
201 202

        In the above example:
203
        'distance' is the average of the edit distance in a pass.
204
        'instance_error' is the instance error rate in a pass.
W
wanghaoshuang 已提交
205

206 207
    """

W
wanghaoshuang 已提交
208
    def __init__(self, input, label, ignored_tokens=None, **kwargs):
209 210 211 212 213
        super(EditDistance, self).__init__("edit_distance", **kwargs)
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

214 215
        self.total_distance = self.create_state(
            dtype='float32', shape=[1], suffix='total_distance')
216
        self.seq_num = self.create_state(
W
wanghaoshuang 已提交
217
            dtype='int64', shape=[1], suffix='seq_num')
218 219
        self.instance_error = self.create_state(
            dtype='int64', shape=[1], suffix='instance_error')
220
        distances, seq_num = layers.edit_distance(
W
wanghaoshuang 已提交
221
            input=input, label=label, ignored_tokens=ignored_tokens)
222 223 224 225 226

        zero = layers.fill_constant(shape=[1], value=0.0, dtype='float32')
        compare_result = layers.equal(distances, zero)
        compare_result_int = layers.cast(x=compare_result, dtype='int')
        seq_right_count = layers.reduce_sum(compare_result_int)
227 228
        instance_error_count = layers.elementwise_sub(
            x=seq_num, y=seq_right_count)
229 230 231 232
        total_distance = layers.reduce_sum(distances)
        layers.sums(
            input=[self.total_distance, total_distance],
            out=self.total_distance)
233
        layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
234 235 236
        layers.sums(
            input=[self.instance_error, instance_error_count],
            out=self.instance_error)
237
        self.metrics.append(total_distance)
238
        self.metrics.append(instance_error_count)
239 240 241 242 243 244

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        with program_guard(main_program=eval_program):
245
            total_distance = _clone_var_(block, self.total_distance)
246
            seq_num = _clone_var_(block, self.seq_num)
247
            instance_error = _clone_var_(block, self.instance_error)
248
            seq_num = layers.cast(x=seq_num, dtype='float32')
249
            instance_error = layers.cast(x=instance_error, dtype='float32')
250
            avg_distance = layers.elementwise_div(x=total_distance, y=seq_num)
251 252 253 254
            avg_instance_error = layers.elementwise_div(
                x=instance_error, y=seq_num)
            result = executor.run(
                eval_program, fetch_list=[avg_distance, avg_instance_error])
255
        return np.array(result[0]), np.array(result[1])
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280


class DetectionMAP(Evaluator):
    """
    Calculate the detection mean average precision (mAP).

    TODO (Dang Qingqing): update the following doc.
    The general steps are as follows:
    1. calculate the true positive and false positive according to the input
        of detection and labels.
    2. calculate mAP value, support two versions: '11 point' and 'integral'.

    Please get more information from the following articles:
      https://sanchom.wordpress.com/tag/average-precision/
      https://arxiv.org/abs/1512.02325

    Args:
        input (Variable): The detection results, which is a LoDTensor with shape
            [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
        gt_label (Variable): The ground truth label index, which is a LoDTensor
            with shape [N, 1]. 
        gt_difficult (Variable): Whether this ground truth is a difficult
            bounding box (bbox), which is a LoDTensor [N, 1].
        gt_box (Variable): The ground truth bounding box (bbox), which is a
            LoDTensor with shape [N, 6]. The layout is [xmin, ymin, xmax, ymax].
281 282 283 284
        class_num (int): The class number.
        background_label (int): The index of background label, the background
            label will be ignored. If set to -1, then all categories will be
            considered, 0 by defalut.
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        overlap_threshold (float): The threshold for deciding true/false
            positive, 0.5 by defalut.
        evaluate_difficult (bool): Whether to consider difficult ground truth
            for evaluation, True by defalut.
        ap_version (string): The average precision calculation ways, it must be
            'integral' or '11point'. Please check
            https://sanchom.wordpress.com/tag/average-precision/ for details.
            - 11point: the 11-point interpolated average precision.
            - integral: the natural integral of the precision-recall curve.

    Example:

        exe = fluid.executor(place)
        map_evaluator = fluid.Evaluator.DetectionMAP(input,
            gt_label, gt_difficult, gt_box)
        cur_map, accum_map = map_evaluator.get_map_var()
        fetch = [cost, cur_map, accum_map]
        for epoch in PASS_NUM:
            map_evaluator.reset(exe)
            for data in batches:
                loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)

        In the above example:

        'cur_map_v' is the mAP of current mini-batch.
        'accum_map_v' is the accumulative mAP of one pass.
    """

    def __init__(self,
                 input,
                 gt_label,
                 gt_box,
                 gt_difficult,
318 319
                 class_num,
                 background_label=0,
320 321 322 323 324 325 326 327 328 329 330 331 332
                 overlap_threshold=0.5,
                 evaluate_difficult=True,
                 ap_version='integral'):
        super(DetectionMAP, self).__init__("map_eval")

        gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
        gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
        label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)

        # calculate mean average precision (mAP) of current mini-batch
        map = layers.detection_map(
            input,
            label,
333 334
            class_num,
            background_label,
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            ap_version=ap_version)

        self.create_state(dtype='int32', shape=None, suffix='accum_pos_count')
        self.create_state(dtype='float32', shape=None, suffix='accum_true_pos')
        self.create_state(dtype='float32', shape=None, suffix='accum_false_pos')

        self.has_state = None
        var = self.helper.create_variable(
            persistable=True, dtype='int32', shape=[1])
        self.helper.set_variable_initializer(
            var, initializer=Constant(value=int(0)))
        self.has_state = var

        # calculate accumulative mAP
        accum_map = layers.detection_map(
            input,
            label,
354 355
            class_num,
            background_label,
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            has_state=self.has_state,
            input_states=self.states,
            out_states=self.states,
            ap_version=ap_version)

        layers.fill_constant(
            shape=self.has_state.shape,
            value=1,
            dtype=self.has_state.dtype,
            out=self.has_state)

        self.cur_map = map
        self.accum_map = accum_map

    def get_map_var(self):
        return self.cur_map, self.accum_map

    def reset(self, executor, reset_program=None):
        if reset_program is None:
            reset_program = Program()
        with program_guard(main_program=reset_program):
            var = _clone_var_(reset_program.current_block(), self.has_state)
            layers.fill_constant(
                shape=var.shape, value=0, dtype=var.dtype, out=var)
        executor.run(reset_program)