elementwise_add_mkldnn_op.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/elementwise_add_op.h"
#include "paddle/fluid/operators/elementwise_op_function.h"

#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::reorder;
using mkldnn::primitive;
using mkldnn::stream;
using mkldnn::sum;

template <typename T>
class EltwiseAddMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    const T* x_data = x->data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->mutable_data<T>(ctx.GetPlace());

    int axis = ctx.Attr<int>("axis");

    auto x_dims = x->dims();
    auto y_dims = y->dims();
    auto z_dims = z->dims();

    // Execute default elementwise_add operator when
    // broadcast operations need to performed.
    if (x_dims != y_dims) {
      auto sum_func = [](T a, T b) -> T { return a + b; };

      TransformFunctor<decltype(sum_func), T,
                       paddle::platform::CPUDeviceContext, T>
          functor(
              x, y, z,
              ctx.template device_context<paddle::platform::CPUDeviceContext>(),
              sum_func);

      axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
      PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                     "Axis should be in range [0, x_dims)");

      trim_trailing_singular_dims(&y_dims);
      axis = (y_dims.size() == 0) ? x_dims.size() : axis;

      int pre, n, post;
      get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

      if (post == 1) {
        functor.RunRowWise(n, pre);
      } else {
        functor.RunMidWise(n, pre, post);
      }
      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
    } else {
      PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                         x->format() != memory::format::format_undef,
                     "Wrong layout/format set for X tensor");
      PADDLE_ENFORCE(y->layout() == DataLayout::kMKLDNN &&
                         y->format() != memory::format::format_undef,
                     "Wrong layout/format set for X tensor");

      std::vector<int> src_x_tz = framework::vectorize2int(x_dims);
      std::vector<int> src_y_tz = framework::vectorize2int(y_dims);
      std::vector<int> dst_tz = framework::vectorize2int(z_dims);

      std::vector<memory::primitive_desc> srcs_pd;
      std::vector<memory> srcs;
      std::vector<float> scales = {1.0f, 1.0f};

      auto src_x_pd = memory::primitive_desc(
          {{src_x_tz}, memory::data_type::f32, x->format()}, mkldnn_engine);
      auto src_y_pd = memory::primitive_desc(
          {{src_y_tz}, memory::data_type::f32, y->format()}, mkldnn_engine);
      auto src_x_memory =
          memory(src_x_pd, paddle::platform::to_void_cast(x_data));
      auto src_y_memory =
          memory(src_y_pd, paddle::platform::to_void_cast(y_data));

      srcs_pd.push_back(src_x_pd);
      srcs_pd.push_back(src_y_pd);
      srcs.push_back(src_x_memory);
      srcs.push_back(src_y_memory);

      auto dst_md =
          memory::desc({dst_tz}, memory::data_type::f32, memory::format::any);

      // create primitive descriptor for sum
      auto sum_pd = sum::primitive_desc(dst_md, scales, srcs_pd);

      // create mkldnn memory for dst
      memory dst_memory = memory(sum_pd.dst_primitive_desc(), z_data);

      std::vector<primitive::at> inputs;
      inputs.push_back(srcs[0]);
      inputs.push_back(srcs[1]);

      // create sum primitive
      auto sum_prim = sum(sum_pd, inputs, dst_memory);

      std::vector<primitive> pipeline;
      pipeline.push_back(sum_prim);
      stream(stream::kind::eager).submit(pipeline).wait();

      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(
          (memory::format)dst_memory.get_primitive_desc().desc().data.format);
    }
  }
};

template <typename T>
class EltwiseAddMKLDNNGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");

    auto set_mkldnn_format = [](Tensor* in, const Tensor* out) {
      in->set_layout(DataLayout::kMKLDNN);
      in->set_format(out->format());
    };

    if (x->dims() == y->dims()) {
      auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, T>(ctx);
      if (dx) {
        blas.VCOPY(dout->numel(), dout->data<T>(),
                   dx->mutable_data<T>(ctx.GetPlace()));
        set_mkldnn_format(dx, dout);
      }

      if (dy) {
        blas.VCOPY(dout->numel(), dout->data<T>(),
                   dy->mutable_data<T>(ctx.GetPlace()));
        set_mkldnn_format(dy, dout);
      }
    } else {
      // Execute default kernel when broadcast is needed
      ElemwiseGradCompute<paddle::platform::CPUDeviceContext, T,
                          IdentityGrad<T>, IdentityGrad<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, IdentityGrad<T>(),
          IdentityGrad<T>());
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(elementwise_add, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::EltwiseAddMKLDNNKernel<float>)

REGISTER_OP_KERNEL(elementwise_add_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::EltwiseAddMKLDNNGradKernel<float>)