notest_machine_translation.py 5.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle.v2 as paddle
17 18 19 20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
import os

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim = 32
word_dim = 16
IS_SPARSE = True
batch_size = 10
max_length = 50
topk_size = 50
trg_dic_size = 10000

decoder_size = hidden_dim


def encoder_decoder():
    # encoder
    src_word_id = layers.data(
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
    src_embedding = layers.embedding(
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

    fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = layers.sequence_last_step(input=lstm_hidden0)

    # decoder
    trg_language_word = layers.data(
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
    trg_embedding = layers.embedding(
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
        mem = rnn.memory(init=encoder_out)
        fc1 = fluid.layers.fc(input=[current_word, mem],
                              size=decoder_size,
                              act='tanh')
        out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax')
        rnn.update_memory(mem, fc1)
        rnn.output(out)

    return rnn()


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = core.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def main():
    rnn_out = encoder_decoder()
    label = layers.data(
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
    cost = layers.cross_entropy(input=rnn_out, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimize_ops, params_grads = optimizer.minimize(avg_cost)

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

    place = core.CPUPlace()
    exe = Executor(place)

    t = fluid.DistributeTranspiler()
    # all parameter server endpoints list for spliting parameters
    pserver_endpoints = os.getenv("PSERVERS")
    # server endpoint for current node
    current_endpoint = os.getenv("SERVER_ENDPOINT")
    # run as trainer or parameter server
    training_role = os.getenv(
        "TRAINING_ROLE", "TRAINER")  # get the training role: trainer/pserver
    t.transpile(
        optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)

    if training_role == "PSERVER":
        if not current_endpoint:
            print("need env SERVER_ENDPOINT")
            exit(1)
        pserver_prog = t.get_pserver_program(current_endpoint)
        pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
        exe.run(pserver_startup)
        exe.run(pserver_prog)
    elif training_role == "TRAINER":
        trainer_prog = t.get_trainer_program()
        exe.run(framework.default_startup_program())

        batch_id = 0
        for pass_id in xrange(2):
            for data in train_data():
                word_data = to_lodtensor(map(lambda x: x[0], data), place)
                trg_word = to_lodtensor(map(lambda x: x[1], data), place)
                trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
                outs = exe.run(trainer_prog,
                               feed={
                                   'src_word_id': word_data,
                                   'target_language_word': trg_word,
                                   'target_language_next_word': trg_word_next
                               },
                               fetch_list=[avg_cost])
                avg_cost_val = np.array(outs[0])
                print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                      " avg_cost=" + str(avg_cost_val))
                if batch_id > 3:
                    exit(0)
                batch_id += 1
    else:
        print("environment var TRAINER_ROLE should be TRAINER os PSERVER")


if __name__ == '__main__':
    main()