data_transform.cc 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/data_transform.h"
16

17 18 19 20 21
#include "paddle/phi/api/ext/dispatch.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/transfer_layout_kernel.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

#include "paddle/fluid/framework/data_device_transform.h"

namespace paddle {
namespace experimental {

inline bool NeedTransformDataType(const DataType& input,
                                  const DataType& target,
                                  const TransformFlag& transform_flag) {
  return input != target &&
         (transform_flag.need_trans_data_type() ||
          target == DataType::COMPLEX64 || target == DataType::COMPLEX128);
}

inline bool NeedTransformPlace(const paddle::platform::Place& input,
                               const Backend& target,
                               const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_backend() &&
             target != Backend::ALL_BACKEND &&
41
             !platform::is_same_place(input, phi::TransToPtenPlace(target));
42 43 44 45 46 47 48 49 50 51 52 53
  return ret;
}

inline bool NeedTransformLayout(const DataLayout& input,
                                const DataLayout& target,
                                const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_layout() &&
             (input != DataLayout::ALL_LAYOUT &&
              target != DataLayout::ALL_LAYOUT && input != target);
  return ret;
}

54 55
inline phi::DenseTensor TransDataLayout(const phi::DenseTensor& tensor,
                                        DataLayout layout) {
56 57 58 59
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  VLOG(3) << "DataLayoutTransform src_layout: " << tensor.layout()
          << " dst_layout: " << layout;
  if (platform::is_cpu_place(tensor.place())) {
60 61
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
    return phi::TransferLayout(*dev_ctx, tensor, layout);
62
  } else {
63
    PADDLE_THROW(phi::errors::PreconditionNotMet(
64 65 66 67 68
        "Unsupported data layout cast from CPU to GPU."));
  }
}

template <typename Context>
69 70 71
phi::DenseTensor CastDateType(const Context& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
72 73
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
74
      return phi::Cast<float>(dev_ctx, tensor, dtype);
75
    case DataType::FLOAT64:
76
      return phi::Cast<double>(dev_ctx, tensor, dtype);
77
    case DataType::INT32:
78
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
79
    case DataType::INT64:
80
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
81
    case DataType::FLOAT16:
82
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
83
    case DataType::BFLOAT16:
84
      return phi::Cast<phi::dtype::bfloat16>(dev_ctx, tensor, dtype);
85
    case DataType::BOOL:
86
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
87
    case DataType::INT16:
88
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
89
    case DataType::UINT8:
90
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
91
    default:
92
      PADDLE_THROW(phi::errors::Unimplemented(
93 94 95 96 97 98
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
99 100 101
phi::DenseTensor CastDateType(const phi::GPUContext& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
102 103
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
104
      return phi::Cast<float>(dev_ctx, tensor, dtype);
105
    case DataType::FLOAT64:
106
      return phi::Cast<double>(dev_ctx, tensor, dtype);
107
    case DataType::INT32:
108
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
109
    case DataType::INT64:
110
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
111
    case DataType::FLOAT16:
112
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
113
    case DataType::BOOL:
114
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
115
    case DataType::INT16:
116
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
117
    case DataType::UINT8:
118
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
119
    default:
120
      PADDLE_THROW(phi::errors::Unimplemented(
121 122 123 124 125 126
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}
#endif

127 128
inline phi::DenseTensor TransDataType(const phi::DenseTensor& tensor,
                                      DataType dtype) {
129 130 131 132 133
  auto& pool = paddle::platform::DeviceContextPool::Instance();

  VLOG(3) << "DataTypeTransform src_dtype: " << tensor.dtype()
          << " dst_dtype: " << dtype;

134 135
  phi::DenseTensor out(
      phi::make_intrusive<paddle::experimental::SharedStorage>(tensor.place()),
136 137 138
      {dtype, tensor.dims(), tensor.layout()});

  if (platform::is_cpu_place(tensor.place())) {
139
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
140 141 142
    return CastDateType(*dev_ctx, tensor, dtype);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else if (platform::is_gpu_place(tensor.place())) {
143
    auto* dev_ctx = static_cast<phi::GPUContext*>(pool.Get(tensor.place()));
144 145 146
    return CastDateType(*dev_ctx, tensor, dtype);
#endif
  } else {
147
    PADDLE_THROW(phi::errors::Unimplemented(
148 149 150 151 152
        "Place type is not supported when casting data type."));
  }
  return out;
}

153 154 155 156
phi::DenseTensor TransformData(const phi::DenseTensor& tensor,
                               const phi::TensorArgDef& target_args_def,
                               const TransformFlag& transform_flag) {
  phi::DenseTensor out = tensor;
157 158 159 160 161 162 163 164 165 166 167 168
  if (NeedTransformLayout(
          tensor.layout(), target_args_def.layout, transform_flag)) {
    out = TransDataLayout(out, target_args_def.layout);
  }

  if (NeedTransformDataType(
          tensor.dtype(), target_args_def.dtype, transform_flag)) {
    out = TransDataType(out, target_args_def.dtype);
  }

  if (NeedTransformPlace(
          out.place(), target_args_def.backend, transform_flag)) {
169 170 171
    phi::DenseTensor result(
        phi::make_intrusive<paddle::experimental::SharedStorage>(
            phi::TransToPtenPlace(target_args_def.backend)),
172 173
        {out.dtype(), out.dims(), out.layout()});
    framework::TransDataDevice(
174
        out, phi::TransToPtenPlace(target_args_def.backend), &result);
175 176 177 178 179
    out = result;
  }
  return out;
}

180
std::shared_ptr<phi::DenseTensor> PrepareData(
181
    const Tensor& input,
182
    const phi::TensorArgDef& target_args_def,
183 184 185 186 187 188 189 190 191
    const TransformFlag& transform_flag) {
  const auto& tensor_in = input.impl();
  if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
      (!NeedTransformPlace(
           tensor_in->place(), target_args_def.backend, transform_flag) &&
       !NeedTransformDataType(
           tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
       !NeedTransformLayout(
           tensor_in->layout(), target_args_def.layout, transform_flag))) {
192
    return std::dynamic_pointer_cast<phi::DenseTensor>(tensor_in);
193 194
  }

195 196
  phi::DenseTensor out =
      TransformData(*(static_cast<phi::DenseTensor*>(tensor_in.get())),
197 198
                    target_args_def,
                    transform_flag);
199
  return std::make_shared<phi::DenseTensor>(out);
200 201
}

202
std::unique_ptr<std::vector<phi::DenseTensor>> PrepareData(
203
    const std::vector<Tensor>& inputs,
204
    const phi::TensorArgDef& target_args_def,
205
    const TransformFlag& transform_flag) {
206
  auto pt_tensors = std::make_unique<std::vector<phi::DenseTensor>>();
207 208 209 210 211 212 213 214 215 216 217 218
  pt_tensors->reserve(inputs.size());

  for (const auto& input : inputs) {
    const auto& tensor_in = input.impl();
    if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
        (!NeedTransformPlace(
             tensor_in->place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             tensor_in->layout(), target_args_def.layout, transform_flag))) {
      pt_tensors->emplace_back(
219
          *std::dynamic_pointer_cast<phi::DenseTensor>(tensor_in));
220 221
    } else {
      pt_tensors->emplace_back(
222
          TransformData(*(static_cast<phi::DenseTensor*>(tensor_in.get())),
223 224 225 226 227 228 229 230 231 232
                        target_args_def,
                        transform_flag));
    }
  }

  return std::move(pt_tensors);
}

}  // namespace experimental
}  // namespace paddle