pipeline_scheduler_pass.py 13.4 KB
Newer Older
L
LiYuRio 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.distributed.auto_parallel.static.utils import (
    is_backward_op,
    is_forward_op,
    is_lr_sched_op,
    is_optimize_op,
)
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.fluid import core
from paddle.fluid.framework import Parameter, Program

25
from .pass_base import PassBase, PassContext, new_pass, register_pass
L
LiYuRio 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

__not_shape_var_type__ = [
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
    core.VarDesc.VarType.LOD_TENSOR_ARRAY,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
]


def _create_param(dst_block, src_var):
    copied_kwargs = {}
    copied_kwargs['trainable'] = src_var.trainable
    copied_kwargs['optimize_attr'] = src_var.optimize_attr
    copied_kwargs['regularizer'] = src_var.regularizer
    copied_kwargs['do_model_average'] = src_var.do_model_average
    copied_kwargs['need_clip'] = src_var.need_clip

    Parameter(
        block=dst_block,
        type=src_var.type,
        name=src_var.name,
        shape=src_var.shape,
        dtype=src_var.dtype,
        lod_level=src_var.lod_level,
        error_clip=src_var.error_clip,
        stop_gradient=src_var.stop_gradient,
        is_data=src_var.is_data,
        belong_to_optimizer=src_var.belong_to_optimizer,
        **copied_kwargs
    )


def _create_inter(dst_block, src_var):
    dst_block.create_var(
        type=src_var.type,
        name=src_var.name,
        shape=src_var.shape,
        dtype=src_var.dtype,
        lod_level=src_var.lod_level,
        persistable=src_var.persistable,
        error_clip=src_var.error_clip,
        stop_gradient=src_var.stop_gradient,
        is_data=src_var.is_data,
        belong_to_optimizer=src_var.belong_to_optimizer,
    )


def _create_var(src_block, dst_block, src_varname, force_create=False):
    if not force_create:
        src_var = src_block.var(src_varname)
    else:
        src_var = src_block._var_recursive(src_varname)
    if src_var.type in __not_shape_var_type__:
        persist = getattr(src_var, 'persistable', False)
        dst_block.create_var(
            type=src_var.type,
            name=src_var.name,
            persistable=persist,
            error_clip=src_var.error_clip,
            stop_gradient=src_var.stop_gradient,
            is_data=src_var.is_data,
            belong_to_optimizer=src_var.belong_to_optimizer,
        )
    else:
        if isinstance(src_var, Parameter):
            _create_param(dst_block, src_var)
        else:
            _create_inter(dst_block, src_var)


def _create_program(src_block, dst_block, src_op, force_create=False):
    dst_op_desc = dst_block.desc.append_op()
    dst_op_desc.copy_from(src_op.desc)
    for input_varname in src_op.input_arg_names:
        if src_block.has_var(input_varname) or (
            force_create and src_block._find_var_recursive(input_varname)
        ):
            _create_var(src_block, dst_block, input_varname, force_create)
    for output_varname in src_op.output_arg_names:
        if src_block.has_var(output_varname) or (
            force_create and src_block._find_var_recursive(output_varname)
        ):
            _create_var(src_block, dst_block, output_varname, force_create)


def _insert_sync_for_fthenb_1f1b(program):
    """
    This implementation refers to lots of Paddle/python/paddle/fluid/optimizer.py.
    The difference between this function with 'PipelineOptimizer' is that
    'send_v2' op and 'recv_v2' op have been inserted in program by 'reshard'.
    """

    for block in program.blocks:
        offset = 0
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if is_optimize_op(op):
                first_optimize_index = index
                break

        # insert sync ops
        for index, op in enumerate(list(block.ops)):
            # NOTE: pipeline might hang when dynamic_shape is True
            if op.type in ['send_v2', 'recv_v2']:
                op._set_attr("dynamic_shape", False)
            # set send op on comm stream
            if op.type == 'send_v2':
                # step1: set 'use_calc_stream' False
                op._set_attr("use_calc_stream", False)
                op_role = op.attr('op_role')
                ring_id = op.attr('ring_id')
                # step2: insert 'c_sync_calc_stream' op before 'send_v2' op
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._insert_op_without_sync(
                    index=index + offset,
                    type="c_sync_calc_stream",
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
                    attrs={'op_role': op_role},
                )
                offset += 1
                # step3: insert 'c_sync_comm_stream' op after 'send_v2' op or
                # before the first optimize op
                if int(op_role) == int(OpRole.Backward):
                    index = first_optimize_index + offset
                    new_op_role = OpRole.Optimize
                else:
                    index = index + offset + 1
                    new_op_role = OpRole.Backward
                sync_comm_op = block._insert_op_without_sync(
                    index=index,
                    type="c_sync_comm_stream",
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
                    attrs={
                        'op_role': new_op_role,
                        'ring_id': ring_id,
                    },
                )
                # step4: If 'send_v2' op in forward parse, set 'pipeline_flag' to distinguish
                # whether the 'c_sync_comm_stream' op is inserted for pipeline.
                if int(op_role) == int(OpRole.Forward):
                    sync_comm_op._set_attr('pipeline_flag', '')
                    offset += 1
        block._sync_with_cpp()

        offset = 0
        backward_recv_index = None
        for index, op in enumerate(block.ops):
            if op.type == "recv_v2" and is_backward_op(op):
                backward_recv_index = index
                break
        if backward_recv_index is None:
            continue

        # replace 'c_sync_comm_stream' op with 'nop' op
        # use nop op for gc
        for index, op in enumerate(list(block.ops)):
            if index >= backward_recv_index:
                break
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.output_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type="nop",
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
                    attrs={'op_role': OpRole.Backward},
                )
        block._sync_with_cpp()


def _program_for_fthenb_and_1f1b(program):
    lr_prog = Program()
    fwd_prog = Program()
    bwd_prog = Program()
    opt_prog = Program()

    for idx, src_block in enumerate(program.blocks):
        if idx == 0:
            lr_block = lr_prog.block(0)
            fwd_block = fwd_prog.block(0)
            bwd_block = bwd_prog.block(0)
            opt_block = opt_prog.block(0)
        else:
            lr_block = lr_prog._create_block(parent_idx=src_block.parent_idx)
            fwd_block = fwd_prog._create_block(parent_idx=src_block.parent_idx)
            bwd_block = bwd_prog._create_block(parent_idx=src_block.parent_idx)
            opt_block = opt_prog._create_block(parent_idx=src_block.parent_idx)
            lr_block._set_forward_block_idx(src_block.forward_block_idx)
            fwd_block._set_forward_block_idx(src_block.forward_block_idx)
            bwd_block._set_forward_block_idx(src_block.forward_block_idx)
            opt_block._set_forward_block_idx(src_block.forward_block_idx)

        # split the program based on the op_role
        for op in src_block.ops:
            if is_lr_sched_op(op):
                _create_program(src_block, lr_block, op)
            if is_forward_op(op):
                _create_program(src_block, fwd_block, op)
            elif is_backward_op(op):
                _create_program(src_block, bwd_block, op)
            elif is_optimize_op(op):
                _create_program(src_block, opt_block, op)
            else:
                raise ValueError(
                    "The op role: "
                    + str(op.attr('op_role'))
                    + " isn't one of LRSched, Forward, Backward or Optimizer."
                )

    lr_prog._sync_with_cpp()
    fwd_prog._sync_with_cpp()
    bwd_prog._sync_with_cpp()
    opt_prog._sync_with_cpp()

    lr_prog._rollback()
    fwd_prog._rollback()
    bwd_prog._rollback()
    opt_prog._rollback()

    return {
        "lr": lr_prog.desc,
        "forward": fwd_prog.desc,
        "backward": bwd_prog.desc,
        "optimizer": opt_prog.desc,
    }


260
@register_pass("pipeline_scheduler_FThenB")
L
LiYuRio 已提交
261 262 263 264 265 266 267 268 269 270 271 272
class PipelineFThenBPass(PassBase):
    def __init__(self):
        super().__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _create_job_list(self):
        job_list = []
273
        lr_job = core.Job("lr")
L
LiYuRio 已提交
274
        job_list.append(lr_job)
L
LiYuRio 已提交
275

276
        for i in range(self._num_micro_batches):
277
            forward_job = core.Job("forward")
L
LiYuRio 已提交
278 279 280
            forward_job.set_micro_batch_id(i)
            job_list.append(forward_job)

281
        for i in range(self._num_micro_batches):
282
            backward_job = core.Job("backward")
L
LiYuRio 已提交
283 284 285
            backward_job.set_micro_batch_id(i)
            job_list.append(backward_job)

286
        opt_job = core.Job("optimizer")
L
LiYuRio 已提交
287 288 289 290
        job_list.append(opt_job)
        return job_list

    def _apply_single_impl(self, main_program, startup_program, context):
291
        self._num_micro_batches = self.get_attr("num_micro_batches")
L
LiYuRio 已提交
292 293 294 295 296 297
        self._program = main_program

        _insert_sync_for_fthenb_1f1b(self._program)
        type_to_program = _program_for_fthenb_and_1f1b(self._program)
        job_list = self._create_job_list()

298
        plan = core.Plan(job_list, type_to_program)
L
LiYuRio 已提交
299
        context.set_attr("plan", plan)
300 301


L
LiYuRio 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
@register_pass("pipeline_scheduler_1F1B")
class Pipeline1F1BPass(PassBase):
    def __init__(self):
        super().__init__()

    def _check_self(self):
        return True

    def _check_conflict(self, other_pass):
        return True

    def _create_job_list(self):
        job_list = []
        lr_job = core.Job("lr")
        job_list.append(lr_job)

        assert (
            self._pp_degree <= self._num_micro_batches
        ), "Num of micro batches should larger than pp degree."

        micro_batch_in_warmup = self._pp_degree - self._pp_stage
        micro_batch_in_1f1b = self._num_micro_batches - micro_batch_in_warmup

        forward_micro_batch_id = 0
        for i in range(micro_batch_in_warmup):
            forward_job = core.Job("forward")
            forward_job.set_micro_batch_id(forward_micro_batch_id)
            job_list.append(forward_job)
            forward_micro_batch_id += 1

        backward_micro_batch_id = 0
        for i in range(micro_batch_in_1f1b):
            backward_job = core.Job("backward")
            backward_job.set_micro_batch_id(backward_micro_batch_id)
            job_list.append(backward_job)
            backward_micro_batch_id += 1
            forward_job = core.Job("forward")
            forward_job.set_micro_batch_id(forward_micro_batch_id)
            job_list.append(forward_job)
            forward_micro_batch_id += 1

        for i in range(micro_batch_in_warmup):
            backward_job = core.Job("backward")
            backward_job.set_micro_batch_id(backward_micro_batch_id)
            job_list.append(backward_job)
            backward_micro_batch_id += 1

        opt_job = core.Job("optimizer")
        job_list.append(opt_job)
        return job_list

    def _apply_single_impl(self, main_program, startup_program, context):
        self._num_micro_batches = self.get_attr("num_micro_batches")
        self._pp_stage = self.get_attr("pp_stage")
        self._pp_degree = self.get_attr("pp_degree")
        self._program = main_program

        _insert_sync_for_fthenb_1f1b(self._program)
        type_to_program = _program_for_fthenb_and_1f1b(self._program)
        job_list = self._create_job_list()

        plan = core.Plan(job_list, type_to_program)
        context.set_attr("plan", plan)


367 368
def apply_pass(main_program, startup_program, pass_name, pass_attr={}):
    assert pass_name in [
L
LiYuRio 已提交
369 370 371
        "FThenB",
        "1F1B",
    ], "pipeline scheduler only support FThenB and 1F1B, but recieve {}".format(
372 373 374 375 376 377 378
        pass_name
    )
    pipeline_pass = new_pass("pipeline_scheduler_" + pass_name, pass_attr)
    pass_context = PassContext()
    pipeline_pass.apply([main_program], [startup_program], pass_context)
    plan = pass_context.get_attr("plan")
    return plan