ConvProjection.cpp 8.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "ConvProjection.h"
Y
Yu Yang 已提交
16
#include "paddle/utils/Stat.h"
17 18 19 20 21

namespace paddle {

REGISTER_PROJECTION(conv, ConvProjection);

22
ThreadLocalD<std::vector<MemoryHandle *>> ConvProjection::convMem_;
23

24 25 26
ConvProjection::ConvProjection(const ProjectionConfig &config,
                               ParameterPtr parameter,
                               bool useGpu)
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    : Projection(config, parameter, useGpu) {
  CHECK(useGpu);  // only support GPU
  getConvParams();
  initCudnn();

  size_t height = filterH_ * filterW_ * channels_ / groups_;
  size_t width = numFilters_;
  weight_.reset(new Weight(height, width, parameter));
  weightOffset_ = height * width / groups_;
}

void ConvProjection::getConvParams() {
  const ConvConfig &conf = config_.conv_conf();
  paddingH_ = conf.padding_y();
  paddingW_ = conf.padding();

  strideH_ = conf.stride_y();
  strideW_ = conf.stride();

  filterH_ = conf.filter_size_y();
  filterW_ = conf.filter_size();

L
Luo Tao 已提交
49
  configImgH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
50 51 52 53 54 55 56 57 58 59 60
  configImgW_ = conf.img_size();

  channels_ = conf.channels();
  numFilters_ = config_.num_filters();

  groups_ = conf.groups();
  CHECK_EQ(channels_ % groups_, 0);
  CHECK_EQ(numFilters_ % groups_, 0);
}

void ConvProjection::initCudnn() {
L
Luo Tao 已提交
61 62 63 64 65
  hl_create_filter_descriptor(&filterDesc_,
                              channels_ / groups_,
                              numFilters_ / groups_,
                              filterH_,
                              filterW_);
66 67
  hl_create_tensor_descriptor(&inputDesc_);
  hl_create_tensor_descriptor(&outputDesc_);
68 69 70 71 72 73 74
  hl_create_convolution_descriptor(&convDesc_,
                                   inputDesc_,
                                   filterDesc_,
                                   paddingH_,
                                   paddingW_,
                                   strideH_,
                                   strideW_);
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

  // initialize all to default algorithms
  fwdAlgo_ = 0;
  bwdFilterAlgo_ = 0;
  bwdDataAlgo_ = 0;
  fwdLimitBytes_ = 0;
  bwdDataLimitBytes_ = 0;
  bwdFilterLimitBytes_ = 0;
  workSpaceInBytes_ = 0;

  batchNum_ = 0;
  isSelectAlgo_ = false;
}

void ConvProjection::reshapeTensorDesc(int batchSize) {
90 91
  hl_tensor_reshape(inputDesc_,
                    batchSize,
92
                    channels_ / groups_,
93 94 95 96 97 98 99 100 101 102 103 104 105
                    imageH_,
                    imageW_,
                    channels_ * imageH_ * imageW_,
                    imageH_ * imageW_,
                    imageW_,
                    1);
  hl_reset_convolution_descriptor(convDesc_,
                                  inputDesc_,
                                  filterDesc_,
                                  paddingH_,
                                  paddingW_,
                                  strideH_,
                                  strideW_);
106 107 108 109 110 111 112 113 114 115 116 117 118

  // The stride between two consecutive images in ConvProjection may not be 1,
  // for example, in the case of layer ConcatenateLayer2 with two
  // ConvProjection, the stride is the output_size of layer ConcatenateLayer2.
  // So the calculation of nStride is different from CudnnConvLayer.
  // In fact, only "nStride = out_->value->getStride()" is ok.
  size_t nStride = numFilters_ * outputH_ * outputW_;
  if (out_->value->isContiguous()) {
    CHECK_EQ(nStride, out_->value->getWidth());
  } else {
    nStride = out_->value->getStride();
  }

119 120
  hl_tensor_reshape(outputDesc_,
                    batchSize,
121
                    numFilters_ / groups_,
122 123 124 125 126 127
                    outputH_,
                    outputW_,
                    nStride,
                    outputH_ * outputW_,
                    outputW_,
                    1);
128 129 130 131 132
}

void ConvProjection::reshape(int batchSize) {
  size_t width = calOutputSize();
  CHECK_EQ(width, out_->value->getWidth());
X
xuwei06 已提交
133
  CHECK_EQ(channels_ * imageH_ * imageW_, in_->value->getWidth())
X
xuwei06 已提交
134 135 136
      << "Wrong input size for convolution"
      << " channels=" << channels_ << " imageH=" << imageH_
      << " imageW=" << imageW_ << " inputSize=" << in_->value->getWidth();
137 138 139 140 141 142

  isSelectAlgo_ = (batchSize == batchNum_);
  batchNum_ = batchSize;

  if (!isSelectAlgo_) {
    reshapeTensorDesc(batchSize);
143 144 145 146 147 148 149 150 151 152
    hl_conv_workspace(inputDesc_,
                      outputDesc_,
                      filterDesc_,
                      convDesc_,
                      &fwdAlgo_,
                      &fwdLimitBytes_,
                      &bwdDataAlgo_,
                      &bwdDataLimitBytes_,
                      &bwdFilterAlgo_,
                      &bwdFilterLimitBytes_);
153 154 155 156 157 158 159

    size_t maxWorkSpace = 0;
    maxWorkSpace = std::max(fwdLimitBytes_, bwdDataLimitBytes_);
    maxWorkSpace = std::max(maxWorkSpace, bwdFilterLimitBytes_);
    workSpaceInBytes_ = maxWorkSpace;

    VLOG(3) << getName() << " Fwd / BwdData / BwdFilter algo: " << fwdAlgo_
160
            << " / " << bwdDataAlgo_ << " / " << bwdFilterAlgo_;
161 162 163 164 165 166 167 168 169
  }

  isSelectAlgo_ = true;
}

void ConvProjection::forward() {
  int batchSize = in_->value->getHeight();
  reshape(batchSize);

170
  void *workSpace = NULL;
171 172 173 174 175 176 177 178 179 180
  if (workSpaceInBytes_ > 0) {
    workSpace = getSpaceBytes(workSpaceInBytes_);
  }

  for (int g = 0; g < groups_; ++g) {
    REGISTER_TIMER_INFO("CudnnConvFwTimer", getName().c_str());

    real *inputData = in_->value->getData() + g * inputOffset_;
    real *wgtData = weight_->getW()->getData() + g * weightOffset_;
    real *outData = out_->value->getData() + g * outputOffset_;
181 182 183 184 185 186 187 188 189 190
    hl_convolution_forward(inputDesc_,
                           inputData,
                           outputDesc_,
                           outData,
                           filterDesc_,
                           wgtData,
                           convDesc_,
                           workSpace,
                           fwdLimitBytes_,
                           fwdAlgo_);
191 192 193
  }
}

194
void ConvProjection::backward(const UpdateCallback &callback) {
195 196
  REGISTER_TIMER_INFO("CudnnConvBpTimer", getName().c_str());

197
  void *workSpace = NULL;
198 199 200 201 202 203 204 205 206
  if (workSpaceInBytes_ > 0) {
    workSpace = getSpaceBytes(workSpaceInBytes_);
  }

  for (int g = 0; g < groups_; ++g) {
    real *outGrad = out_->grad->getData() + g * outputOffset_;
    if (weight_->getWGrad()) {
      real *inputData = in_->value->getData() + g * inputOffset_;
      real *weightGrad = weight_->getWGrad()->getData() + g * weightOffset_;
207 208 209 210 211 212 213 214 215 216
      hl_convolution_backward_filter(inputDesc_,
                                     inputData,
                                     outputDesc_,
                                     outGrad,
                                     filterDesc_,
                                     weightGrad,
                                     convDesc_,
                                     workSpace,
                                     bwdFilterLimitBytes_,
                                     bwdFilterAlgo_);
217 218 219 220 221
    }

    MatrixPtr preGrad = in_->grad;
    if (NULL != preGrad) {
      real *inputGrad = preGrad->getData() + g * inputOffset_;
222 223 224 225 226 227 228 229 230 231 232
      real *wgtData = weight_->getW()->getData() + g * weightOffset_;
      hl_convolution_backward_data(inputDesc_,
                                   inputGrad,
                                   outputDesc_,
                                   outGrad,
                                   filterDesc_,
                                   wgtData,
                                   convDesc_,
                                   workSpace,
                                   bwdDataLimitBytes_,
                                   bwdDataAlgo_);
233 234 235 236 237 238
    }
  }

  weight_->getParameterPtr()->incUpdate(callback);
}

239 240
void *ConvProjection::getSpaceBytes(size_t size) {
  std::vector<MemoryHandle *> &convMem = *convMem_;
241 242 243 244 245 246
  if (convMem.empty()) {
    int numDevices = hl_get_device_count();
    convMem.resize(numDevices);
  }

  int devId = hl_get_device();
247
  MemoryHandle **localMem = &(convMem[devId]);
248 249 250 251 252 253 254 255 256 257 258 259 260 261
  if (NULL == *localMem || size > (*localMem)->getAllocSize()) {
    *localMem = new GpuMemoryHandle(size);
  }
  return (*localMem)->getBuf();
}

ConvProjection::~ConvProjection() {
  hl_destroy_tensor_descriptor(inputDesc_);
  hl_destroy_tensor_descriptor(outputDesc_);
  hl_destroy_filter_descriptor(filterDesc_);
  hl_destroy_convolution_descriptor(convDesc_);
}

}  // namespace paddle