legacy_allocator.cc 11.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/allocation/legacy_allocator.h"
M
minqiyang 已提交
16

Y
Yu Yang 已提交
17
#include <string>
L
liuwei1031 已提交
18
#include <utility>
19
#include <vector>
M
minqiyang 已提交
20

21
#ifdef PADDLE_WITH_JEMALLOC
M
minqiyang 已提交
22 23 24
#include <jemalloc/jemalloc.h>
#endif

Y
Yu Yang 已提交
25 26 27 28 29
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/string/printf.h"
30
#include "paddle/fluid/string/split.h"
Y
Yu Yang 已提交
31 32 33 34 35 36 37

DEFINE_bool(init_allocated_mem, false,
            "It is a mistake that the values of the memory allocated by "
            "BuddyAllocator are always zeroed in some op's implementation. "
            "To find this error in time, we use init_allocated_mem to indicate "
            "that initializing the allocated memory with a small value "
            "during unit testing.");
38
DECLARE_bool(benchmark);
Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47
DECLARE_double(fraction_of_gpu_memory_to_use);

namespace paddle {
namespace memory {
namespace legacy {
template <typename Place>
void *Alloc(const Place &place, size_t size);

template <typename Place>
L
liuwei1031 已提交
48
void Free(const Place &place, void *p, size_t size);
Y
Yu Yang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

template <typename Place>
size_t Used(const Place &place);

struct Usage : public boost::static_visitor<size_t> {
  size_t operator()(const platform::CPUPlace &cpu) const;
  size_t operator()(const platform::CUDAPlace &gpu) const;
  size_t operator()(const platform::CUDAPinnedPlace &cuda_pinned) const;
};

size_t memory_usage(const platform::Place &p);

using BuddyAllocator = detail::BuddyAllocator;

BuddyAllocator *GetCPUBuddyAllocator() {
  // We tried thread_local for inference::RNN1 model, but that not works much
  // for multi-thread test.
  static std::once_flag init_flag;
  static detail::BuddyAllocator *a = nullptr;

  std::call_once(init_flag, []() {
    a = new detail::BuddyAllocator(
        std::unique_ptr<detail::SystemAllocator>(new detail::CPUAllocator),
        platform::CpuMinChunkSize(), platform::CpuMaxChunkSize());
  });

  return a;
}

// We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation,
// seems they are almost the same overhead.
struct NaiveAllocator {
  void *Alloc(size_t size) { return malloc(size); }

  void Free(void *p) {
    PADDLE_ENFORCE(p);
    free(p);
  }

  static NaiveAllocator *Instance() {
    static NaiveAllocator x;
    return &x;
  }

 private:
  std::mutex lock_;
};

template <>
void *Alloc<platform::CPUPlace>(const platform::CPUPlace &place, size_t size) {
G
gongweibao 已提交
99
  VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place);
100
#ifdef PADDLE_WITH_JEMALLOC
M
minqiyang 已提交
101 102
  void *p = malloc(size);
#else
Y
Yu Yang 已提交
103
  void *p = GetCPUBuddyAllocator()->Alloc(size);
M
minqiyang 已提交
104
#endif
Y
Yu Yang 已提交
105 106 107
  if (FLAGS_init_allocated_mem) {
    memset(p, 0xEF, size);
  }
M
minqiyang 已提交
108
  VLOG(10) << "  pointer=" << p;
Y
Yu Yang 已提交
109 110 111 112
  return p;
}

template <>
L
liuwei1031 已提交
113 114
void Free<platform::CPUPlace>(const platform::CPUPlace &place, void *p,
                              size_t size) {
G
gongweibao 已提交
115
  VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place);
116
#ifdef PADDLE_WITH_JEMALLOC
M
minqiyang 已提交
117 118
  free(p);
#else
Y
Yu Yang 已提交
119
  GetCPUBuddyAllocator()->Free(p);
M
minqiyang 已提交
120
#endif
Y
Yu Yang 已提交
121 122 123 124
}

template <>
size_t Used<platform::CPUPlace>(const platform::CPUPlace &place) {
125 126
#ifdef PADDLE_WITH_JEMALLOC
  // fake the result of used memory when PADDLE_WITH_JEMALLOC is ON
M
minqiyang 已提交
127 128
  return 0U;
#else
Y
Yu Yang 已提交
129
  return GetCPUBuddyAllocator()->Used();
M
minqiyang 已提交
130
#endif
Y
Yu Yang 已提交
131 132 133 134 135 136
}

#ifdef PADDLE_WITH_CUDA
BuddyAllocator *GetGPUBuddyAllocator(int gpu_id) {
  static std::once_flag init_flag;
  static detail::BuddyAllocator **a_arr = nullptr;
137
  static std::vector<int> devices;
Y
Yu Yang 已提交
138 139

  std::call_once(init_flag, [gpu_id]() {
140 141
    devices = platform::GetSelectedDevices();
    int gpu_num = devices.size();
Y
Yu Yang 已提交
142

143 144
    allocation::GPUMemMonitor.Initialize(devices.size());

Y
Yu Yang 已提交
145
    a_arr = new BuddyAllocator *[gpu_num];
146 147
    for (size_t i = 0; i < devices.size(); ++i) {
      int dev_id = devices[i];
Y
Yu Yang 已提交
148
      a_arr[i] = nullptr;
149 150 151 152 153
      platform::SetDeviceId(dev_id);
      a_arr[i] = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
                                        new detail::GPUAllocator(dev_id)),
                                    platform::GpuMinChunkSize(),
                                    platform::GpuMaxChunkSize());
Y
Yu Yang 已提交
154

M
minqiyang 已提交
155 156 157 158 159 160
      VLOG(10) << "\n\nNOTE: each GPU device use "
               << FLAGS_fraction_of_gpu_memory_to_use * 100
               << "% of GPU memory.\n"
               << "You can set GFlags environment variable '"
               << "FLAGS_fraction_of_gpu_memory_to_use"
               << "' to change the fraction of GPU usage.\n\n";
Y
Yu Yang 已提交
161 162 163 164
    }
  });

  platform::SetDeviceId(gpu_id);
165 166 167
  auto pos = std::distance(devices.begin(),
                           std::find(devices.begin(), devices.end(), gpu_id));
  return a_arr[pos];
Y
Yu Yang 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
}
#endif

template <>
size_t Used<platform::CUDAPlace>(const platform::CUDAPlace &place) {
#ifdef PADDLE_WITH_CUDA
  return GetGPUBuddyAllocator(place.device)->Used();
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

template <>
void *Alloc<platform::CUDAPlace>(const platform::CUDAPlace &place,
                                 size_t size) {
#ifdef PADDLE_WITH_CUDA
  auto *buddy_allocator = GetGPUBuddyAllocator(place.device);
  auto *ptr = buddy_allocator->Alloc(size);
  if (ptr == nullptr) {
    int cur_dev = platform::GetCurrentDeviceId();
    platform::SetDeviceId(place.device);
    size_t avail, total;
    platform::GpuMemoryUsage(&avail, &total);
    LOG(WARNING) << "Cannot allocate " << string::HumanReadableSize(size)
                 << " in GPU " << place.device << ", available "
                 << string::HumanReadableSize(avail);
    LOG(WARNING) << "total " << total;
    LOG(WARNING) << "GpuMinChunkSize "
                 << string::HumanReadableSize(
                        buddy_allocator->GetMinChunkSize());
    LOG(WARNING) << "GpuMaxChunkSize "
                 << string::HumanReadableSize(
                        buddy_allocator->GetMaxChunkSize());
    LOG(WARNING) << "GPU memory used: "
                 << string::HumanReadableSize(Used<platform::CUDAPlace>(place));
    platform::SetDeviceId(cur_dev);
L
liuwei1031 已提交
204
  } else {
205
    if (FLAGS_benchmark) allocation::GPUMemMonitor.Add(place.device, size);
L
liuwei1031 已提交
206 207 208
    if (FLAGS_init_allocated_mem) {
      cudaMemset(ptr, 0xEF, size);
    }
Y
Yu Yang 已提交
209 210 211 212 213 214 215 216
  }
  return ptr;
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

template <>
L
liuwei1031 已提交
217 218
void Free<platform::CUDAPlace>(const platform::CUDAPlace &place, void *p,
                               size_t size) {
Y
Yu Yang 已提交
219 220
#ifdef PADDLE_WITH_CUDA
  GetGPUBuddyAllocator(place.device)->Free(p);
221
  if (FLAGS_benchmark) allocation::GPUMemMonitor.Minus(place.device, size);
Y
Yu Yang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

#ifdef PADDLE_WITH_CUDA
BuddyAllocator *GetCUDAPinnedBuddyAllocator() {
  static std::once_flag init_flag;
  static BuddyAllocator *ba = nullptr;

  std::call_once(init_flag, []() {
    ba = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
                                new detail::CUDAPinnedAllocator),
                            platform::CUDAPinnedMinChunkSize(),
                            platform::CUDAPinnedMaxChunkSize());
  });

  return ba;
}
#endif

template <>
size_t Used<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place) {
#ifdef PADDLE_WITH_CUDA
  return GetCUDAPinnedBuddyAllocator()->Used();
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

template <>
void *Alloc<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
                                       size_t size) {
#ifdef PADDLE_WITH_CUDA
  auto *buddy_allocator = GetCUDAPinnedBuddyAllocator();
  void *ptr = buddy_allocator->Alloc(size);

  if (ptr == nullptr) {
D
Dun Liang 已提交
260
    LOG(WARNING) << "cudaHostAlloc Cannot allocate " << size
Y
Yu Yang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273
                 << " bytes in CUDAPinnedPlace";
  }
  if (FLAGS_init_allocated_mem) {
    memset(ptr, 0xEF, size);
  }
  return ptr;
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

template <>
void Free<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
L
liuwei1031 已提交
274
                                     void *p, size_t size) {
Y
Yu Yang 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
#ifdef PADDLE_WITH_CUDA
  GetCUDAPinnedBuddyAllocator()->Free(p);
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

struct AllocVisitor : public boost::static_visitor<void *> {
  inline explicit AllocVisitor(size_t size) : size_(size) {}

  template <typename Place>
  inline void *operator()(const Place &place) const {
    return Alloc<Place>(place, size_);
  }

 private:
  size_t size_;
};

struct FreeVisitor : public boost::static_visitor<void> {
L
liuwei1031 已提交
295 296
  inline explicit FreeVisitor(void *ptr, size_t size)
      : ptr_(ptr), size_(size) {}
Y
Yu Yang 已提交
297 298 299

  template <typename Place>
  inline void operator()(const Place &place) const {
L
liuwei1031 已提交
300
    Free<Place>(place, ptr_, size_);
Y
Yu Yang 已提交
301 302 303 304
  }

 private:
  void *ptr_;
L
liuwei1031 已提交
305
  size_t size_;
Y
Yu Yang 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
};

size_t Usage::operator()(const platform::CPUPlace &cpu) const {
  return Used(cpu);
}

size_t Usage::operator()(const platform::CUDAPlace &gpu) const {
#ifdef PADDLE_WITH_CUDA
  return Used(gpu);
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

size_t Usage::operator()(const platform::CUDAPinnedPlace &cuda_pinned) const {
#ifdef PADDLE_WITH_CUDA
  return Used(cuda_pinned);
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}
}  // namespace legacy

namespace allocation {

331 332
LegacyMemMonitor GPUMemMonitor;

Y
Yu Yang 已提交
333 334 335 336 337 338
Allocation *LegacyAllocator::AllocateImpl(size_t size, Allocator::Attr attr) {
  void *ptr = boost::apply_visitor(legacy::AllocVisitor(size), place_);
  return new Allocation(ptr, size, place_);
}

void LegacyAllocator::Free(Allocation *allocation) {
L
liuwei1031 已提交
339 340 341
  boost::apply_visitor(
      legacy::FreeVisitor(allocation->ptr(), allocation->size()),
      allocation->place());
Y
Yu Yang 已提交
342 343
  delete allocation;
}
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

bool MemInfo::Add(const size_t &size) {
  std::lock_guard<std::mutex> lock(mutex_);
  usage_ += size;
  bool peak_point = usage_ > peak_usage_;
  if (peak_point) peak_usage_ = usage_;
  return peak_point;
}

void MemInfo::Minus(const size_t &size) {
  std::lock_guard<std::mutex> lock(mutex_);
  usage_ -= size;
}

uint64_t MemInfo::GetPeakUsage() { return peak_usage_; }

LegacyMemMonitor::~LegacyMemMonitor() {
  for (auto &item : gpu_mem_info_) delete item.second;
}

void LegacyMemMonitor::Initialize(const int &device_num) {
  for (auto i = 0; i < device_num; ++i) {
    gpu_mem_info_[i] = new MemInfo();
  }
}

void LegacyMemMonitor::Add(const int &device, const size_t &size) {
  if (gpu_mem_info_[device]->Add(size)) {
    VLOG(3) << "#LegacyMemMonitor# device: " << device
            << " peak memory usage : "
            << (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB";
  }
}

void LegacyMemMonitor::Minus(const int &device, const size_t &size) {
  gpu_mem_info_[device]->Minus(size);
}

uint64_t LegacyMemMonitor::GetMemUsage(const int &device) {
  return gpu_mem_info_.find(device) == gpu_mem_info_.end()
             ? 0
             : gpu_mem_info_[device]->GetPeakUsage();
}

void LegacyMemMonitor::PrintMemUsage() {
  std::vector<int> devices;
  for (const auto &item : gpu_mem_info_) {
    devices.emplace_back(item.first);
  }
  std::sort(devices.begin(), devices.end());
  for (const auto &device : devices) {
    std::cout << "Device : " << device << " Peak Memory Usage : "
              << (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB"
              << std::endl;
  }
}

Y
Yu Yang 已提交
401 402 403
}  // namespace allocation
}  // namespace memory
}  // namespace paddle