test_layer_norm_op.py 30.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

C
chengduoZH 已提交
15
import unittest
16 17 18
from functools import reduce
from operator import mul

C
chengduoZH 已提交
19
import numpy as np
20 21 22 23 24
from eager_op_test import (
    OpTest,
    _set_use_system_allocator,
    convert_float_to_uint16,
)
C
chengduoZH 已提交
25

26
import paddle
27
import paddle.nn.functional as F
28 29
from paddle import base
from paddle.base import Program, core, program_guard
30
from paddle.static.amp.fp16_utils import _keep_layer_norm_scale_bias_to_fp32
31 32

paddle.enable_static()
C
chengduoZH 已提交
33

34 35
np.random.seed(123)
paddle.seed(123)
C
chengduoZH 已提交
36

37 38
_set_use_system_allocator(True)

C
chengduoZH 已提交
39

C
chengduoZH 已提交
40
def _reference_layer_norm_naive(x, scale, beta, epsilon, begin_norm_axis=1):
C
chengduoZH 已提交
41 42
    x_shape = x.shape
    N = reduce(mul, x_shape[0:begin_norm_axis], 1)
43
    D = reduce(mul, x_shape[begin_norm_axis : len(x_shape)], 1)
C
chengduoZH 已提交
44
    x.shape = [N, D]
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46 47
    mean = np.mean(x, axis=1)
    var = np.var(x, axis=1) + epsilon
48 49 50
    output = np.divide(
        (x - mean.reshape([N, 1])), (np.sqrt(var)).reshape([N, 1])
    )
51 52 53 54
    if scale is not None:
        output = scale.reshape([1, D]) * output
    if beta is not None:
        output = output + beta.reshape([1, D])
C
chengduoZH 已提交
55 56

    x.shape, output.shape = x_shape, x_shape
C
chengduoZH 已提交
57 58 59
    return output, mean, var


60 61 62
def _reference_layer_norm_grad(
    x, grad_y, scale, bias, mean, var, begin_norm_axis=1
):
C
chengduoZH 已提交
63
    x_shape = x.shape
C
chengduoZH 已提交
64
    N = reduce(mul, x_shape[0:begin_norm_axis], 1)
65
    D = reduce(mul, x_shape[begin_norm_axis : len(x_shape)], 1)
66 67 68 69

    if scale is not None:
        scale_shape = scale.shape
        scale.shape = [1, D]
C
chengduoZH 已提交
70 71
    x.shape, grad_y.shape = [N, D], [N, D]
    var.shape, mean.shape = [N, 1], [N, 1]
C
chengduoZH 已提交
72

C
chengduoZH 已提交
73
    # d_bias
74 75 76 77
    if bias is not None:
        d_bias = np.sum(grad_y, axis=0).reshape([1, D])
    else:
        d_bias = None
C
chengduoZH 已提交
78
    # d_scale
79
    if scale is not None:
80 81 82
        d_scale = np.sum(
            ((x - mean) * np.sqrt(1 / var)) * grad_y, axis=0
        ).reshape([1, D])
83 84
    else:
        d_scale = None
C
chengduoZH 已提交
85
    # dx
86 87
    if scale is not None:
        dx_end = scale * np.sqrt(1.0 / var) * grad_y
88 89 90
        d_mean_0 = np.sum(-np.sqrt(1.0 / var) * grad_y * scale, axis=1).reshape(
            [N, 1]
        )  # the second part equals to zero.
91
        d_mean = 1.0 / D * d_mean_0
92 93 94 95 96
        d_std = np.sum(
            -(1.0 / var) * (x - mean) * grad_y * scale, axis=1
        ).reshape([N, 1]) * (
            1.0 / D * np.sqrt(1.0 / var).reshape([N, 1]) * (x - mean)
        )
97 98
    else:
        dx_end = 1.0 * np.sqrt(1.0 / var) * grad_y
99 100 101
        d_mean_0 = np.sum(-np.sqrt(1.0 / var) * grad_y * 1.0, axis=1).reshape(
            [N, 1]
        )  # the second part equals to zero.
102
        d_mean = 1.0 / D * d_mean_0
103 104 105 106 107
        d_std = np.sum(
            -(1.0 / var) * (x - mean) * grad_y * 1.0, axis=1
        ).reshape([N, 1]) * (
            1.0 / D * np.sqrt(1.0 / var).reshape([N, 1]) * (x - mean)
        )
C
chengduoZH 已提交
108

C
chengduoZH 已提交
109
    grad_x = dx_end + d_mean + d_std
C
chengduoZH 已提交
110

C
chengduoZH 已提交
111
    grad_x.shape, x.shape, grad_y.shape = x_shape, x_shape, x_shape
112
    var.shape, mean.shape = [N], [N]
113 114 115

    if scale is not None:
        scale.shape = scale_shape
C
chengduoZH 已提交
116
    return grad_x, d_scale, d_bias
C
chengduoZH 已提交
117 118


119 120 121 122 123 124 125 126 127 128
def layer_norm_wrapper(
    x, scale=None, bias=None, epsilon=1e-05, begin_norm_axis=1
):
    input_shape = list(x.shape)
    normalized_shape = input_shape[begin_norm_axis:]
    return paddle.nn.functional.layer_norm(
        x, normalized_shape, weight=scale, bias=bias, epsilon=epsilon
    )


129 130 131 132
@unittest.skipIf(
    paddle.is_compiled_with_rocm(),
    "ROCm doesn't support fp64 LayerNormOpByOp currently",
)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
class TestLayerNormOpByOpTest(OpTest):
    def setUp(self):
        self.python_api = layer_norm_wrapper
        self.public_python_api = layer_norm_wrapper
        self.op_type = "layer_norm"
        self.prim_op_type = "comp"
        self.python_out_sig = ["Y"]
        self.initConfig()
        self.initTestCase()

    def test_check_output(self):
        self.check_output(
            no_check_set=["Mean", "Variance"],
            atol=self.ori_atol,
            rtol=self.ori_rtol,
            check_prim=True,
        )

    def test_check_grad(self):
        self.check_grad(
            self.check_grad_input_list,
            ['Y'],
            max_relative_error=self.max_relative_error,
            check_prim=True,
        )

    def initConfig(self):
        self.rev_comp_atol = 1e-7
        self.rev_comp_rtol = 1e-7
        self.fw_comp_atol = 1e-6
        self.fw_comp_rtol = 1e-6

        self.ori_atol = 1e-4
        self.ori_rtol = 1e-4
        self.cinn_atol = 1e-5
        self.cinn_rtol = 1e-5

        self.max_relative_error = 1e-5
171
        # ROCm does not have float64 LayerNorm kernel
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        self.dtype = "float64"
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = True
        self.has_bias = True

    def initTestCase(self):
        np.random.seed(123)

        self.D = reduce(
            mul, self.x_shape[self.begin_norm_axis : len(self.x_shape)], 1
        )
        self.scale_shape = [self.D]
        x = np.random.random(self.x_shape).astype(self.dtype)
        scale = (
            np.random.random(self.scale_shape).astype(self.dtype)
            if self.has_scale
            else None
        )
        bias = (
            np.random.random(self.scale_shape).astype(self.dtype)
            if self.has_bias
            else None
        )
        self.inputs = {
            "X": x,
        }
        self.check_grad_input_list = ['X']

        if self.has_scale:
            self.inputs.update({"Scale": scale})
            self.check_grad_input_list.append('Scale')
        if self.has_bias:
            self.inputs.update({"Bias": bias})
            self.check_grad_input_list.append('Bias')

        self.attrs = {
            "epsilon": self.epsilon,
            "begin_norm_axis": self.begin_norm_axis,
        }
        y, mean, variance = _reference_layer_norm_naive(
            x, scale, bias, self.epsilon, self.begin_norm_axis
        )
        self.outputs = {
            "Y": y,
            "Mean": mean,
            "Variance": variance,
        }


223 224
@unittest.skipIf(
    not core.is_compiled_with_cuda()
225
    or paddle.is_compiled_with_rocm()
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
)
class TestLayerNormBF16OpByOpTest(OpTest):
    def setUp(self):
        self.python_api = layer_norm_wrapper
        self.public_python_api = layer_norm_wrapper
        self.op_type = "layer_norm"
        self.prim_op_type = "comp"
        self.python_out_sig = ["Y"]
        self.initConfig()
        self.initTestCase()

    def test_check_output(self):
        self.check_output_with_place(
            place=core.CUDAPlace(0),
            no_check_set=["Mean", "Variance"],
            atol=self.ori_atol,
            rtol=self.ori_rtol,
            check_prim=True,
        )

    def test_check_grad(self):
        self.check_grad_with_place(
            core.CUDAPlace(0),
            self.check_grad_input_list,
            ['Y'],
            max_relative_error=self.max_relative_error,
            check_prim=True,
        )

    def initConfig(self):
        self.ori_atol = 1e-2
        self.ori_rtol = 1e-2

        self.max_relative_error = 1e-5

        self.dtype = np.uint16
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = True
        self.has_bias = True

    def initTestCase(self):
        np.random.seed(123)

        self.D = reduce(
            mul, self.x_shape[self.begin_norm_axis : len(self.x_shape)], 1
        )
        self.scale_shape = [self.D]
        x = np.random.random(self.x_shape).astype("float32")
        scale = (
            np.random.random(self.scale_shape).astype("float32")
            if self.has_scale
            else None
        )
        bias = (
            np.random.random(self.scale_shape).astype("float32")
            if self.has_bias
            else None
        )
        self.inputs = {
            "X": convert_float_to_uint16(x),
        }
        self.check_grad_input_list = ['X']

        if self.has_scale:
            self.inputs.update({"Scale": convert_float_to_uint16(scale)})
            self.check_grad_input_list.append('Scale')
        if self.has_bias:
            self.inputs.update({"Bias": convert_float_to_uint16(bias)})
            self.check_grad_input_list.append('Bias')

        self.attrs = {
            "epsilon": self.epsilon,
            "begin_norm_axis": self.begin_norm_axis,
        }
        y, mean, variance = _reference_layer_norm_naive(
            x, scale, bias, self.epsilon, self.begin_norm_axis
        )
        self.outputs = {
            "Y": convert_float_to_uint16(y),
            "Mean": convert_float_to_uint16(mean),
            "Variance": convert_float_to_uint16(variance),
        }


314 315 316 317
@unittest.skipIf(
    paddle.is_compiled_with_rocm(),
    "ROCm doesn't support fp64 LayerNormOpByOp currently",
)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
class TestLayerNormOpByOpTestFP64_case2(TestLayerNormOpByOpTest):
    def initConfig(self):
        self.rev_comp_atol = 1e-6
        self.rev_comp_rtol = 1e-6
        self.fw_comp_atol = 1e-7
        self.fw_comp_rtol = 1e-7

        self.ori_atol = 1e-4
        self.ori_rtol = 1e-4
        self.cinn_atol = 1e-5
        self.cinn_rtol = 1e-5

        self.max_relative_error = 1e-5

        self.dtype = "float64"
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = False
        self.has_bias = False


340
@unittest.skipIf(
341 342 343 344
    not core.is_compiled_with_cuda()
    or paddle.is_compiled_with_rocm()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
345
)
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
class TestLayerNormBF16OpByOpTest_case2(TestLayerNormBF16OpByOpTest):
    def initConfig(self):
        self.ori_atol = 1e-2
        self.ori_rtol = 1e-2

        self.max_relative_error = 1e-5

        self.dtype = np.uint16
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = False
        self.has_bias = False


361 362 363 364
@unittest.skipIf(
    paddle.is_compiled_with_rocm(),
    "ROCm doesn't support fp64 LayerNormOpByOp currently",
)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
class TestLayerNormOpByOpTestFP64_case3(TestLayerNormOpByOpTest):
    def initConfig(self):
        self.rev_comp_atol = 1e-7
        self.rev_comp_rtol = 1e-7
        self.fw_comp_atol = 1e-7
        self.fw_comp_rtol = 1e-7

        self.ori_atol = 1e-4
        self.ori_rtol = 1e-4
        self.cinn_atol = 1e-5
        self.cinn_rtol = 1e-5

        self.max_relative_error = 1e-5

        self.dtype = "float64"
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = True
        self.has_bias = False


387
@unittest.skipIf(
388 389 390 391
    not core.is_compiled_with_cuda()
    or paddle.is_compiled_with_rocm()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
392
)
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
class TestLayerNormBF16OpByOpTest_case3(TestLayerNormBF16OpByOpTest):
    def initConfig(self):
        self.ori_atol = 1e-2
        self.ori_rtol = 1e-2

        self.max_relative_error = 1e-5

        self.dtype = np.uint16
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = True
        self.has_bias = False


408 409 410 411
@unittest.skipIf(
    paddle.is_compiled_with_rocm(),
    "ROCm doesn't support fp64 LayerNormOpByOp currently",
)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
class TestLayerNormOpByOpTestFP64_case4(TestLayerNormOpByOpTest):
    def initConfig(self):
        self.rev_comp_atol = 1e-6
        self.rev_comp_rtol = 1e-6
        self.fw_comp_atol = 1e-7
        self.fw_comp_rtol = 1e-7

        self.ori_atol = 1e-4
        self.ori_rtol = 1e-4
        self.cinn_atol = 1e-5
        self.cinn_rtol = 1e-5

        self.max_relative_error = 1e-5

        self.dtype = "float64"
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = False
        self.has_bias = True


434 435 436 437 438 439
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or paddle.is_compiled_with_rocm()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
class TestLayerNormBF16OpByOpTest_case4(TestLayerNormBF16OpByOpTest):
    def initConfig(self):
        self.ori_atol = 1e-2
        self.ori_rtol = 1e-2

        self.max_relative_error = 1e-5

        self.dtype = np.uint16
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = False
        self.has_bias = True


455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
class TestLayerNormOpByOpTestFP32(TestLayerNormOpByOpTest):
    def initConfig(self):
        self.rev_comp_atol = 1e-5
        self.rev_comp_rtol = 1e-5

        self.ori_atol = 1e-4
        self.ori_rtol = 1e-4
        self.max_relative_error = 7e-3

        self.dtype = "float32"
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = True
        self.has_bias = True


class TestLayerNormOpByOpTestFP32_case2(TestLayerNormOpByOpTest):
    def initConfig(self):
        self.rev_comp_atol = 1e-5
        self.rev_comp_rtol = 1e-5

        self.ori_atol = 1e-4
        self.ori_rtol = 1e-4
        self.max_relative_error = 1e-5

        self.dtype = "float32"
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = False
        self.has_bias = False


class TestLayerNormOpByOpTestFP32_case3(TestLayerNormOpByOpTest):
    def initConfig(self):
        self.rev_comp_atol = 1e-5
        self.rev_comp_rtol = 1e-5

        self.ori_atol = 1e-4
        self.ori_rtol = 1e-4
        self.max_relative_error = 3e-3

        self.dtype = "float32"
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = True
        self.has_bias = False


class TestLayerNormOpByOpTestFP32_case4(TestLayerNormOpByOpTest):
    def initConfig(self):
        self.rev_comp_atol = 1e-5
        self.rev_comp_rtol = 1e-5

        self.ori_atol = 1e-4
        self.ori_rtol = 1e-4
        self.max_relative_error = 1e-3

        self.dtype = "float32"
        self.x_shape = [2, 6, 6, 3]
        self.epsilon = 0.00001
        self.begin_norm_axis = 1
        self.has_scale = False
        self.has_bias = True


523
class TestLayerNormOp(unittest.TestCase):
524 525 526
    def setUp(self):
        self.use_cudnn = True

C
chengduoZH 已提交
527
    def __assert_close(self, tensor, np_array, msg, atol=1e-4):
528 529 530 531 532 533 534
        np.testing.assert_allclose(
            np.array(tensor).flatten(),
            np_array.flatten(),
            rtol=1e-3,
            atol=atol,
            err_msg=msg,
        )
C
chengduoZH 已提交
535

536 537 538 539 540 541 542 543 544 545 546 547
    def check_forward_backward(
        self,
        shape,
        begin_norm_axis,
        has_scale=True,
        has_bias=True,
        y_grad_scale=1.0,
        use_mkldnn=False,
    ):
        def test_with_place(
            place, shape, begin_norm_axis, use_mkldnn=use_mkldnn
        ):
C
chengduoZH 已提交
548 549 550
            # attr
            epsilon = 0.00001
            x_shape = shape
551
            D = reduce(mul, x_shape[begin_norm_axis : len(x_shape)], 1)
C
chengduoZH 已提交
552
            scale_shape = [D]
C
chengduoZH 已提交
553

554 555
            np.random.seed(123)
            x = np.random.random_sample(x_shape).astype(np.float32)
556 557 558 559 560 561 562 563 564 565
            scale = (
                np.random.random_sample(scale_shape).astype(np.float32)
                if has_scale
                else None
            )
            bias = (
                np.random.random_sample(scale_shape).astype(np.float32)
                if has_bias
                else None
            )
566
            y_grad = (np.random.random_sample(x_shape) * y_grad_scale).astype(
567 568
                np.float32
            )
C
chengduoZH 已提交
569

570 571
            # reference forward & backward
            y, mean, variance = _reference_layer_norm_naive(
572 573
                x, scale, bias, epsilon, begin_norm_axis
            )
574
            x_grad, scale_grad, bias_grad = _reference_layer_norm_grad(
575 576
                x, y_grad, scale, bias, mean, variance, begin_norm_axis
            )
577 578 579

            var_dict = locals()
            var_dict['y@GRAD'] = y_grad
580 581 582 583 584
            var_names = ['x', 'mean', 'variance', 'y', 'y@GRAD']
            if has_scale:
                var_names += ['scale']
            if has_bias:
                var_names += ['bias']
585 586
            ground_truth = {name: var_dict[name] for name in var_names}

587 588
            program = base.Program()
            with base.program_guard(program):
589 590
                block = program.global_block()
                for name in ground_truth:
591 592 593 594 595
                    block.create_var(
                        name=name,
                        dtype='float32',
                        shape=ground_truth[name].shape,
                    )
596 597 598 599 600 601 602 603 604 605 606 607 608
                inputs = {"X": block.var('x')}
                fetch_list = [
                    'y',
                    'mean',
                    'variance',
                    'x@GRAD',
                ]
                if has_scale:
                    inputs["Scale"] = block.var('scale')
                    fetch_list += ['scale@GRAD']
                if has_bias:
                    inputs["Bias"] = block.var('bias')
                    fetch_list += ['bias@GRAD']
609 610
                layer_norm_op = block.append_op(
                    type="layer_norm",
611
                    inputs=inputs,
612 613 614
                    outputs={
                        "Y": block.var('y'),
                        "Mean": block.var('mean'),  # share the same memory
615 616 617
                        "Variance": block.var(
                            'variance'
                        ),  # share the same memory
618 619 620
                    },
                    attrs={
                        "epsilon": epsilon,
621
                        "begin_norm_axis": begin_norm_axis,
622 623 624
                        "use_mkldnn": use_mkldnn,
                    },
                )
625 626
                # generate backward op_desc
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
627 628
                    layer_norm_op.desc, set(), []
                )
629 630 631 632 633 634 635 636 637 638 639
                grad_op_desc = grad_op_desc_list[0]
                new_op_desc = block.desc.append_op()
                new_op_desc.copy_from(grad_op_desc)
                for var_name in grad_op_desc.output_arg_names():
                    block.desc.var(var_name.encode("ascii"))
                grad_op_desc.infer_var_type(block.desc)
                grad_op_desc.infer_shape(block.desc)
                for arg in grad_op_desc.output_arg_names():
                    grad_var = block.desc.find_var(arg.encode("ascii"))
                    grad_var.set_dtype(core.VarDesc.VarType.FP32)

640
                program._sync_with_cpp()
641
                exe = base.Executor(place)
J
jzhang533 已提交
642 643 644 645 646 647
                name_list = ['x', 'y@GRAD']
                if has_scale:
                    name_list += ['scale']
                if has_bias:
                    name_list += ['bias']

648 649
                out = exe.run(
                    program,
J
jzhang533 已提交
650
                    feed={name: var_dict[name] for name in name_list},
651 652
                    fetch_list=fetch_list,
                )
H
hong 已提交
653 654
                # print(y)
                # print(out[0])
L
Leo Chen 已提交
655
                self.__assert_close(y, out[0], "y")
656 657 658
                self.__assert_close(mean, out[1], "mean")
                self.__assert_close(variance, out[2], "variance", 1e-3)
                self.__assert_close(x_grad, out[3], "x_grad")
659
                if has_scale:
660 661 662 663 664 665
                    self.__assert_close(
                        scale_grad,
                        out[fetch_list.index('scale@GRAD')],
                        "scale_grad",
                        1e-3,
                    )
666
                if has_bias:
667 668 669 670 671
                    self.__assert_close(
                        bias_grad,
                        out[fetch_list.index('bias@GRAD')],
                        "bias_grad",
                    )
C
chengduoZH 已提交
672 673

        places = [core.CPUPlace()]
674 675 676 677 678
        if (
            core.is_compiled_with_cuda()
            and core.op_support_gpu("layer_norm")
            and self.use_cudnn
        ):
C
chengduoZH 已提交
679 680 681
            places.append(core.CUDAPlace(0))

        for place in places:
C
chengduoZH 已提交
682 683
            test_with_place(place, shape, begin_norm_axis)

684
    def test_check_forward_backward_with_scale_and_bias(self):
C
chengduoZH 已提交
685
        self.check_forward_backward(shape=[2, 3, 4, 5], begin_norm_axis=1)
686
        self.check_forward_backward(shape=[1, 3, 4, 5], begin_norm_axis=1)
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
        self.check_forward_backward(
            shape=[2, 3, 4, 5],
            begin_norm_axis=1,
            has_scale=False,
            has_bias=True,
        )
        self.check_forward_backward(
            shape=[2, 3, 4, 5],
            begin_norm_axis=1,
            has_scale=True,
            has_bias=False,
        )
        self.check_forward_backward(
            shape=[2, 3, 4, 5],
            begin_norm_axis=1,
            has_scale=False,
            has_bias=False,
        )
C
chengduoZH 已提交
705
        self.check_forward_backward(shape=[2, 3, 4, 5], begin_norm_axis=3)
706 707 708
        self.check_forward_backward(
            shape=[92, 513, 129], begin_norm_axis=2, y_grad_scale=0.1
        )
709
        self.check_forward_backward(shape=[3, 34, 1134], begin_norm_axis=2)
710
        self.check_forward_backward(shape=[3, 2, 1133], begin_norm_axis=2)
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        self.check_forward_backward(
            shape=[92, 513, 1134], begin_norm_axis=2, y_grad_scale=0.1
        )
        self.check_forward_backward(
            shape=[92, 513, 1134],
            begin_norm_axis=2,
            has_scale=False,
            has_bias=True,
            y_grad_scale=0.1,
        )
        self.check_forward_backward(
            shape=[92, 513, 1134],
            begin_norm_axis=2,
            has_scale=True,
            has_bias=False,
            y_grad_scale=0.1,
        )
        self.check_forward_backward(
            shape=[92, 513, 1134],
            begin_norm_axis=2,
            has_scale=False,
            has_bias=False,
            y_grad_scale=0.1,
        )
        self.check_forward_backward(
            shape=[512, 1024], begin_norm_axis=1, has_scale=True, has_bias=True
        )
        self.check_forward_backward(
            shape=[1, 128, 256, 256],
            begin_norm_axis=3,
            has_scale=True,
            has_bias=True,
        )
        self.check_forward_backward(
            shape=[1, 256, 384],
            begin_norm_axis=2,
            has_scale=True,
            has_bias=True,
        )
C
chengduoZH 已提交
750 751


752 753
class TestLayerNormAPI(unittest.TestCase):
    def test_case(self):
G
GGBond8488 已提交
754
        x = paddle.static.data(name='x', shape=[64, 32, 256], dtype='float32')
755
        x = paddle.static.nn.layer_norm(
756 757 758 759 760 761 762 763
            x,
            scale=True,
            shift=True,
            begin_norm_axis=1,
            epsilon=1e-05,
            param_attr=None,
            bias_attr=None,
        )
764
        x = paddle.static.nn.layer_norm(
765 766 767 768 769 770 771 772
            x,
            scale=False,
            shift=False,
            begin_norm_axis=1,
            epsilon=1e-05,
            param_attr=None,
            bias_attr=None,
        )
773
        x = paddle.static.nn.layer_norm(
774
            x,
775 776
            scale=True,
            shift=True,
777 778 779 780 781
            begin_norm_axis=1,
            epsilon=1e-05,
            param_attr="scale",
            bias_attr="shift",
        )
782 783


784 785 786
class TestDygraphLayerNormAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
F
furnace 已提交
787 788
            paddle.enable_static()

W
wangzhen38 已提交
789
            layer_norm = paddle.nn.LayerNorm([32, 32])
790 791 792 793 794 795
            # the input of LayerNorm must be Variable.
            x1 = np.random.random((3, 32, 32)).astype('float32')
            self.assertRaises(TypeError, layer_norm, x1)

            # the input dtype of LayerNorm must be float32 or float64
            # float16 only can be set on GPU place
G
GGBond8488 已提交
796 797 798
            x2 = paddle.static.data(
                name='x2', shape=[-1, 3, 32, 32], dtype="int32"
            )
799 800 801
            self.assertRaises(TypeError, layer_norm, x2)


802 803 804 805
@unittest.skipIf(
    not core.is_compiled_with_cuda(),
    "core is not compiled with CUDA or not support the float16",
)
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
class TestFP16ScaleBiasLayerNorm(unittest.TestCase):
    def check_main(self, x_np, weight_np, bias_np, dtype):
        paddle.disable_static()

        weight_np = weight_np.astype(dtype)
        bias_np = bias_np.astype(dtype)

        x = paddle.to_tensor(x_np)
        weight = paddle.to_tensor(weight_np)
        bias = paddle.to_tensor(bias_np)
        x.stop_gradient = False
        weight.stop_gradient = False
        bias.stop_gradient = False
        y = F.layer_norm(x, x.shape[1:], weight, bias)
        x_g, w_g, b_g = paddle.grad(y, [x, weight, bias])
        y_np = y.numpy().astype('float32')
        x_g_np = x_g.numpy().astype('float32')
        w_g_np = w_g.numpy().astype('float16')
        b_g_np = b_g.numpy().astype('float32')

        paddle.enable_static()
        return y_np, x_g_np, w_g_np, b_g_np

    def test_main(self):
        x_np = np.random.random([10, 20]).astype('float16')
        weight_np = np.random.random([20]).astype('float16')
        bias_np = np.random.random([20]).astype('float16')

        y_np_1, x_g_np_1, w_g_np_1, b_g_np_1 = self.check_main(
835 836
            x_np, weight_np, bias_np, 'float16'
        )
837
        y_np_2, x_g_np_2, w_g_np_2, b_g_np_2 = self.check_main(
838 839
            x_np, weight_np, bias_np, 'float32'
        )
840 841

        def assert_equal(x, y):
842
            np.testing.assert_array_equal(x, y)
843 844 845 846 847 848 849

        assert_equal(y_np_1, y_np_2)
        assert_equal(x_g_np_1, x_g_np_2)
        assert_equal(w_g_np_1, w_g_np_2)
        assert_equal(b_g_np_1, b_g_np_2)


850
@unittest.skipIf(
851 852 853 854
    not core.is_compiled_with_cuda()
    or paddle.is_compiled_with_rocm()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
855
)
856 857 858 859 860 861 862 863 864
class TestBF16ScaleBiasLayerNorm(unittest.TestCase):
    def check_main(self, x_np, weight_np, bias_np, dtype):
        paddle.disable_static()

        x = paddle.to_tensor(x_np)
        weight = paddle.to_tensor(weight_np)
        bias = paddle.to_tensor(bias_np)

        if dtype == "bfloat16":
865
            x = x.cast(paddle.base.core.VarDesc.VarType.BF16)
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

        x.stop_gradient = False
        weight.stop_gradient = False
        bias.stop_gradient = False

        y = F.layer_norm(x, x.shape[1:], weight, bias)
        x_g, w_g, b_g = paddle.grad(y, [x, weight, bias])

        y_np = y.cast('float32').numpy()
        x_g_np = x_g.cast('float32').numpy()
        w_g_np = w_g.cast('float32').numpy()
        b_g_np = b_g.cast('float32').numpy()

        paddle.enable_static()
        return y_np, x_g_np, w_g_np, b_g_np

    def test_main(self):
        x_np = np.random.random([10, 20]).astype('float32')
        weight_np = np.random.random([20]).astype('float32')
        bias_np = np.random.random([20]).astype('float32')

        y_np_1, x_g_np_1, w_g_np_1, b_g_np_1 = self.check_main(
888 889
            x_np, weight_np, bias_np, 'float32'
        )
890
        y_np_2, x_g_np_2, w_g_np_2, b_g_np_2 = self.check_main(
891 892
            x_np, weight_np, bias_np, 'bfloat16'
        )
893 894

        def assert_equal(x, y):
895
            np.testing.assert_allclose(x, y, rtol=1e-05, atol=3e-2)
896 897 898 899 900 901 902

        assert_equal(y_np_1, y_np_2)
        assert_equal(x_g_np_1, x_g_np_2)
        assert_equal(w_g_np_1, w_g_np_2)
        assert_equal(b_g_np_1, b_g_np_2)


903 904 905 906 907 908 909 910 911
class TestGetSetKeepLayerNormScaleBiasFP32Flag(unittest.TestCase):
    def test_main(self):
        self.assertTrue(_keep_layer_norm_scale_bias_to_fp32())
        _keep_layer_norm_scale_bias_to_fp32(False)
        self.assertFalse(_keep_layer_norm_scale_bias_to_fp32())
        _keep_layer_norm_scale_bias_to_fp32(True)
        self.assertTrue(_keep_layer_norm_scale_bias_to_fp32())


912 913 914 915
@unittest.skipIf(
    not core.is_compiled_with_cuda() or paddle.is_compiled_with_rocm(),
    "core is not compiled with CUDA or not support the FastMath",
)
916 917 918 919 920 921 922 923 924
class TestFastMathLayerNormOp(unittest.TestCase):
    def check_layer_norm(
        self, dtype, x_np, scale_np, bias_np, norm_axis, has_scale, has_bias
    ):
        paddle.disable_static()
        epsilon = 0.00001

        x = paddle.to_tensor(x_np)
        if dtype == "bfloat16":
925
            x = x.cast(paddle.base.core.VarDesc.VarType.BF16)
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985

        x.stop_gradient = True
        bias = paddle.to_tensor(bias_np) if has_scale else None
        scale = paddle.to_tensor(scale_np) if has_bias else None
        if bias is not None:
            bias.stop_gradient = True
        if scale is not None:
            scale.stop_gradient = True

        y = F.layer_norm(x, x.shape[norm_axis:], scale, bias)
        y_np = y.cast('float32').numpy()
        paddle.enable_static()
        return y_np

    def check_with_fast_math(
        self, dtype, shape, norm_axis, has_scale, has_bias
    ):
        def use_fast_math(enabled):
            paddle.set_flags({'FLAGS_use_fast_math': enabled})

        def __assert_close(x, y):
            np.testing.assert_allclose(x, y, rtol=1e-05, atol=1e-04)

        x_np = np.random.random(shape).astype('float32')
        bias_np = np.random.random(shape[norm_axis:]).astype('float32')
        scale_np = np.random.random(shape[norm_axis:]).astype('float32')

        use_fast_math(False)
        y_fast = self.check_layer_norm(
            dtype, x_np, scale_np, bias_np, norm_axis, has_scale, has_bias
        )
        use_fast_math(True)
        y_dev = self.check_layer_norm(
            dtype, x_np, scale_np, bias_np, norm_axis, has_scale, has_bias
        )
        __assert_close(y_fast, y_dev)

    def check_with_dtype(self, dtype):
        self.check_with_fast_math(
            dtype,
            shape=[17, 129],
            norm_axis=1,
            has_scale=False,
            has_bias=True,
        )
        self.check_with_fast_math(
            dtype,
            shape=[8, 512],
            norm_axis=1,
            has_scale=False,
            has_bias=False,
        )
        self.check_with_fast_math(
            dtype,
            shape=[2, 768],
            norm_axis=1,
            has_scale=False,
            has_bias=False,
        )

986 987 988
    def init_dtype(self):
        self.dtype = 'float32'

989
    def test_main(self):
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
        self.init_dtype()
        self.check_with_dtype(dtype=self.dtype)


@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or paddle.is_compiled_with_rocm()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
)
class TestFastMathLayerNormBF16Op(TestFastMathLayerNormOp):
    def init_dtype(self):
        self.dtype = 'bfloat16'
1003 1004


C
chengduoZH 已提交
1005
if __name__ == '__main__':
H
hong 已提交
1006
    paddle.enable_static()
C
chengduoZH 已提交
1007
    unittest.main()