param_attr.py 8.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

17 18
import six

19 20
from .initializer import Initializer, Xavier, Constant
from .regularizer import WeightDecayRegularizer
Y
Yu Yang 已提交
21

22 23 24 25
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
26

Y
Yu Yang 已提交
27 28

class ParamAttr(object):
C
chengduoZH 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    """
    Parameter attributes object. To fine-tuning network training process, user
    can set parameter's attributes to control training details. Such as learning rate,
    regularization, trainable, do_model_average and the method to initialize param.


    Args:
        name(str): The parameter's name. Default None.
        initializer(Initializer): The method to initial this parameter. Default None.
        learning_rate(float): The parameter's learning rate. The learning rate when
            optimize is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
            Default 1.0.
        regularizer(WeightDecayRegularizer): Regularization factor. Default None.
        trainable(bool): Whether this parameter is trainable. Default True.
        gradient_clip(BaseGradientClipAttr): The method to clip this parameter's
            gradient. Default None.
        do_model_average(bool): Whether this parameter should do model average.
            Default False.

    Examples:
        .. code-block:: python

            w_param_attrs = fluid.ParamAttr(name="fc_weight",
                                            learning_rate=0.5,
                                            regularizer=fluid.L2Decay(1.0),
                                            trainable=True)
            y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
58 59 60 61 62
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
63
                 trainable=True,
W
wanghaoshuang 已提交
64
                 gradient_clip=None,
C
chengduoZH 已提交
65
                 do_model_average=False):
Y
Yu Yang 已提交
66 67 68 69 70
        self.name = name
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
F
fengjiayi 已提交
71
        self.gradient_clip = gradient_clip
W
wanghaoshuang 已提交
72
        self.model_average = do_model_average
Y
Yu Yang 已提交
73

Y
yuyang18 已提交
74
    def _set_default_initializer(self, initializer):
C
chengduoZH 已提交
75 76 77
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
C
chengduoZH 已提交
78 79 80 81 82 83

        Args:
            initializer(Initializer): the initializer to set.

        Returns:
            None
C
chengduoZH 已提交
84
        """
Y
Yu Yang 已提交
85 86 87 88 89 90 91 92 93 94
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

Y
yuyang18 已提交
95
    def _set_default_param_initializer(self):
C
chengduoZH 已提交
96 97
        """
        Set the default initializer for the parameter with Xavier.
C
chengduoZH 已提交
98 99 100 101 102 103

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
104
        """
Y
yuyang18 已提交
105
        self._set_default_initializer(Xavier())
Y
Yu Yang 已提交
106

Y
yuyang18 已提交
107
    def _set_default_bias_initializer(self):
C
chengduoZH 已提交
108 109
        """
        Set the default initializer for the bias with Constant(0.0).
C
chengduoZH 已提交
110 111 112 113 114 115

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
116
        """
Y
yuyang18 已提交
117
        self._set_default_initializer(Constant(0.0))
Y
Yu Yang 已提交
118 119

    @staticmethod
Y
yuyang18 已提交
120
    def _to_attr(arg):
C
chengduoZH 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
135 136
        if arg is None:
            return ParamAttr()
137
        elif isinstance(arg, list) or isinstance(arg, tuple):
Y
yuyang18 已提交
138
            return [ParamAttr._to_attr(a) for a in arg]
Y
Yu Yang 已提交
139 140
        elif isinstance(arg, ParamAttr):
            return arg
141
        elif isinstance(arg, six.string_types):
Y
Yu Yang 已提交
142 143 144 145 146 147
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
Y
yuyang18 已提交
148
            return ParamAttr._to_attr(None) if arg else False
Y
Yu Yang 已提交
149 150 151
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

Y
yuyang18 已提交
152
    def _to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
153 154 155 156 157 158 159 160 161
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
162 163
        kwargs = {
            'name': self.name,
G
guosheng 已提交
164 165 166
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
167
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
168
            'trainable': self.trainable,
W
wanghaoshuang 已提交
169
            'gradient_clip_attr': self.gradient_clip,
W
wanghaoshuang 已提交
170
            'model_average': self.model_average
Y
Yu Yang 已提交
171 172 173 174
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
175 176 177 178


class WeightNormParamAttr(ParamAttr):
    """
C
chengduoZH 已提交
179 180 181 182 183 184 185 186 187
    Used for weight Norm. Weight Norm is a reparameterization of the weight vectors
    in a neural network that decouples the length of those weight vectors from
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.

    Args:
        dim(list): The parameter's name. Default None.
X
Xin Pan 已提交
188 189 190 191 192 193 194 195 196 197 198
        name(str): The parameter's name. Default None.
        initializer(Initializer): The method to initial this parameter. Default None.
        learning_rate(float): The parameter's learning rate. The learning rate when
            optimize is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
            Default 1.0.
        regularizer(WeightDecayRegularizer): Regularization factor. Default None.
        trainable(bool): Whether this parameter is trainable. Default True.
        gradient_clip(BaseGradientClipAttr): The method to clip this parameter's
            gradient. Default None.
        do_model_average(bool): Whether this parameter should do model average.
            Default False.
C
chengduoZH 已提交
199 200 201 202 203 204 205 206 207 208 209

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
            fc = fluid.layers.fc(input=data,
                                 size=1000,
                                 param_attr=WeightNormParamAttr(
                                      dim=None,
                                      name='weight_norm_param'))

G
guosheng 已提交
210 211 212
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
213
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
214 215 216
    # these paramters for inference.
    params_with_weight_norm = []

X
Xin Pan 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def __init__(self,
                 dim=None,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
                 trainable=True,
                 gradient_clip=None,
                 do_model_average=False):
        super(WeightNormParamAttr, self).__init__(
            name=name,
            initializer=initializer,
            learning_rate=learning_rate,
            regularizer=regularizer,
            trainable=trainable,
            gradient_clip=gradient_clip,
            do_model_average=do_model_average)
G
guosheng 已提交
234
        self.dim = dim