sequence_parallel_utils.py 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle import distributed as dist
from paddle.autograd import PyLayer
from paddle.distributed import fleet
from paddle.distributed.fleet.meta_parallel import get_rng_state_tracker
from paddle.distributed.fleet.utils.hybrid_parallel_util import (
    fused_allreduce_gradients_with_group,
)
from paddle.fluid import core
from paddle.nn import Layer
from paddle.nn import functional as F

####################################################
#                                                  #
#        Distributed Communication Operator        #
#                                                  #
####################################################


def scatter(input):
    hcg = fleet.get_hybrid_communicate_group()
    group = hcg.get_model_parallel_group()
    parallelism = group.nranks
    rank = group.rank
    seq_len = input.shape[0]
    assert (
        seq_len % parallelism == 0
    ), "Input sequence length {} can't be divided exactly by sequence parallelism {}".format(
        seq_len, parallelism
    )
    interval = seq_len // parallelism
    input = paddle.slice(
        input, axes=[0], starts=[interval * rank], ends=[interval * (rank + 1)]
    )
    return input


def all_gather(input):
    hcg = fleet.get_hybrid_communicate_group()
    group = hcg.get_model_parallel_group()
    parallelism = group.nranks
    output_shape = input.shape
    output_shape[0] = output_shape[0] * parallelism
    output = paddle.empty(shape=output_shape, dtype=input.dtype)
    group.process_group.all_gather(input, output).wait()
    return output


def reduce_scatter(input):
    hcg = fleet.get_hybrid_communicate_group()
    group = hcg.get_model_parallel_group()
    parallelism = group.nranks
    output_shape = input.shape
    assert (
        input.shape[0] % parallelism == 0
    ), "Input sequence length {} can't be divided exactly by sequence parallelism {}".format(
        input.shape[0], parallelism
    )
    output_shape[0] = output_shape[0] // parallelism
    output = paddle.empty(shape=output_shape, dtype=input.dtype)
    dist.stream.reduce_scatter(
        output, input, op=dist.ReduceOp.SUM, group=group, sync_op=True
    )
    return output


class ScatterOp(PyLayer):
    # input shape: [s, b, h], n is mp parallelism
    # after forward shape: [s/n, b, h]
    @staticmethod
    def forward(ctx, input):
        return scatter(input)

    @staticmethod
    def backward(ctx, grad):
        return all_gather(grad)


class GatherOp(PyLayer):
    # input shape: [s/n, b, h], n is mp parallelism
    # after forward shape: [s, b, h]
    @staticmethod
    def forward(ctx, input):
        return all_gather(input)

    @staticmethod
    def backward(ctx, grad):
        return scatter(grad)


# All gather along the first dim during forward pass
# All reduce and scatter along the first dim during backward pass
class AllGatherOp(PyLayer):
    # input shape: [s/n, b, h], n is mp parallelism
    # after forward shape: [s, b, h]
    @staticmethod
    def forward(ctx, input):
        return all_gather(input)

    # grad shape: [s, b, h], n is mp parallelism
    # after forward shape: [s/n, b, h]
    @staticmethod
    def backward(ctx, grad):
        return reduce_scatter(grad)


# All reduce and scatter along the first dim during forward pass
# All gather along the first dim during backward pass
class ReduceScatterOp(PyLayer):
    # input shape: [s, b, h], n is mp parallelism
    # after forward shape: [s/n, b, h]
    @staticmethod
    def forward(ctx, input):
        return reduce_scatter(input)

    # grad shape: [s/n, b, h], n is mp parallelism
    # after forward shape: [s, b, h]
    @staticmethod
    def backward(ctx, grad):
        return all_gather(grad)


###################################################
#                                                 #
#        Modified Parallel Linear Operator        #
#                                                 #
###################################################


def mark_as_sequence_parallel_parameter(parameter):
    parameter.sequence_parallel = True


def is_sequence_parallel_parameter(parameter):
    return getattr(parameter, "sequence_parallel", False)


def create_fused_allreduce_gradient_hook(parameter_list, accumulation_steps):
    hcg = fleet.get_hybrid_communicate_group()
    group = hcg.get_model_parallel_group()

    step = [0]
    accumulation_steps *= len(parameter_list)

    def __impl__(grad):
        step[0] += 1
        if step[0] == accumulation_steps:
            step[0] = 0
            fused_allreduce_gradients_with_group(
                parameter_list, group=group, scale=1.0
            )
        return grad

    return __impl__


def create_non_fused_allreduce_gradient_hook(param, accumulation_steps):
    hcg = fleet.get_hybrid_communicate_group()
    pg = hcg.get_model_parallel_group().process_group
    step = [0]

    @paddle.autograd.no_grad()
    def __impl__():
        step[0] += 1
        if (step[0] % accumulation_steps) == 0:
            if hasattr(param, "main_grad"):
                pg.allreduce(param.main_grad).wait()
            else:
                pg.allreduce(param.grad).wait()

    return __impl__


def register_sequence_parallel_allreduce_hooks(
    model, accumulation_steps, fuse_sequence_parallel_allreduce
):
    if accumulation_steps <= 0 or not paddle.distributed.is_initialized():
        return

    mp_group = fleet.get_hybrid_communicate_group().get_model_parallel_group()
    if mp_group.nranks <= 1:
        return

    params = []
    for p in model.parameters():
        if is_sequence_parallel_parameter(p):
            params.append(p)

    if fuse_sequence_parallel_allreduce:
        hook = create_fused_allreduce_gradient_hook(params, accumulation_steps)
        for p in params:
            p._register_backward_hook(hook)
    else:
        for p in params:
            hook = create_non_fused_allreduce_gradient_hook(
                p, accumulation_steps
            )
            p._register_backward_hook(hook)


def is_fused_matmul_bias_supported():
    if (
        paddle.is_compiled_with_cuda()
        and not paddle.is_compiled_with_rocm()
        or paddle.is_compiled_with_xpu()
    ):
        return hasattr(core.eager.ops.legacy, "fused_gemm_epilogue")
    else:
        return False


class ColumnSequenceParallelLinear(Layer):
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        has_bias=None,
        gather_output=True,
        fuse_matmul_bias=False,
        mp_group=None,
        name=None,
    ):
        super().__init__()

        hcg = fleet.get_hybrid_communicate_group()
        self.model_parallel_group = (
            hcg.get_model_parallel_group() if mp_group is None else mp_group
        )
        self.world_size = (
            hcg.get_model_parallel_group().nranks
            if mp_group is None
            else mp_group.nranks
        )
        self._name = name
        self.is_mp = self.world_size > 1

        assert (
            gather_output is False
        ), "If sequence_parallel is True, \
                                        gather_output is False"

        self.gather_output = gather_output
        assert out_features % self.world_size == 0, (
            "Number of column of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
                out_features, self.world_size
            )
        )
        self.output_size_per_partition = out_features // self.world_size

        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[in_features, self.output_size_per_partition],
                    attr=self._weight_attr,
                    dtype=self._dtype,
                    is_bias=False,
                )
        else:
            self.weight = self.create_parameter(
                shape=[in_features, self.output_size_per_partition],
                attr=self._weight_attr,
                dtype=self._dtype,
                is_bias=False,
            )

        self.weight.is_distributed = True if self.is_mp else False

        if has_bias:
            # initialize bias to zero like Megatron
            self.bias = self.create_parameter(
                shape=[self.output_size_per_partition],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
                is_bias=True,
            )
            self.bias.is_distributed = True if self.is_mp else False
        else:
            self.bias = None

        self.linear = F.linear

        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in ColumnSequenceParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
                    "with cuda 11.6 or higher, or use xpu version."
                )
            from paddle.incubate.nn.functional import fused_linear

            self.linear = fused_linear

    def forward(self, x):
        # sequence parallelism is same as model parallelism
        # if sequence parallel is true, input shape is [s, b, h]
        # else input shape is [b, s, h]
        if self.is_mp:
            input_parallel = AllGatherOp.apply(x)
        else:
            input_parallel = x
        output = self.linear(
            input_parallel, self.weight, self.bias, name=self._name
        )
        return output


class MPScale(PyLayer):
    @staticmethod
    def forward(ctx, x, mp_degree):
        out = paddle.scale(x, 1.0 / mp_degree)
        return out

    @staticmethod
    def backward(ctx, dout):
        return dout


class RowSequenceParallelLinear(Layer):
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        has_bias=True,
        input_is_parallel=False,
        fuse_matmul_bias=False,
        mp_group=None,
        name=None,
    ):
        super().__init__()

        self.in_features = in_features
        self.out_features = out_features
        assert (
            input_is_parallel is True
        ), "If sequence_parallel is True, \
                                           input_is_parallel should be true."

        self.input_is_parallel = input_is_parallel
        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()
        self._name = name

        hcg = fleet.get_hybrid_communicate_group()
        self.model_parallel_group = (
            hcg.get_model_parallel_group() if mp_group is None else mp_group
        )
        self.world_size = (
            hcg.get_model_parallel_group().nranks
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            hcg.get_model_parallel_group().rank
            if mp_group is None
            else mp_group.rank
        )

        self.is_mp = self.world_size > 1
        assert in_features % self.world_size == 0, (
            "Number of row of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
                in_features, self.world_size
            )
        )

        self.input_size_per_partition = in_features // self.world_size

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[self.input_size_per_partition, self.out_features],
                    attr=self._weight_attr,
                    dtype=self._dtype,
                    is_bias=False,
                )
        else:
            self.weight = self.create_parameter(
                shape=[self.input_size_per_partition, self.out_features],
                attr=self._weight_attr,
                dtype=self._dtype,
                is_bias=False,
            )

        self.weight.is_distributed = True if self.is_mp else False

        # if sequence parallel is true,
        # register hook to all_reduce gradient of weight and bias
        if has_bias:
            self.bias = self.create_parameter(
                shape=[self.out_features],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
                is_bias=True,
            )
            if self.is_mp:
                mark_as_sequence_parallel_parameter(self.bias)
        else:
            self.bias = None

        self.linear = F.linear

        self.mp_scale = None
        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in RowParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
                    "with cuda 11.6 or higher."
                )
            from paddle.incubate.nn.functional import fused_linear

            self.linear = fused_linear
            if self.is_mp and has_bias:
                self.mp_scale = MPScale.apply

    def forward(self, x):
        input_parallel = x
        if self.is_mp:
            if self.mp_scale is not None:
                bias = self.mp_scale(self.bias, self.world_size)
            else:
                bias = None
            output_parallel = self.linear(
                input_parallel, self.weight, bias, name=self._name
            )
            output_ = ReduceScatterOp.apply(output_parallel)
            # if self.bias is not none, sequence parallel will use
            # register_hook to all_reduce self.bias
            if bias is None and self.bias is not None:
                output = output_ + self.bias
            else:
                output = output_
        else:
            output = self.linear(
                input_parallel, self.weight, self.bias, name=self._name
            )
        return output