uniform_random_inplace_op.cc 4.8 KB
Newer Older
J
JYChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/infershape_utils.h"
J
JYChen 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17 18 19
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
J
JYChen 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

namespace paddle {
namespace operators {

class UniformRandomInplaceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddComment(R"DOC(
This operator fills self tensor with random values sampled from a
uniform distribution. The random result is in a range of [min, max).
)DOC");
    AddInput("X", "The input tensor.");
    AddOutput("Out", "The output tensor of uniform random op");
    AddAttr<float>("min", "Minimum value of uniform random. [default -1.0].")
        .SetDefault(-1.0f);
    AddAttr<float>("max", "Maximun value of uniform random. [default 1.0].")
        .SetDefault(1.0f);
    AddAttr<int>("seed",
                 "Random seed used for generating samples. "
                 "If seed is 0, it will use the seed of the global default "
                 "generator (which can be set by paddle.seed). "
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time. [default 0].")
        .SetDefault(0);
    AddAttr<int>("diag_num",
                 "The number of diag elements. Note that if "
                 "diag_num is 0, it means without diag init.[default 0].")
        .SetDefault(0);
    AddAttr<int>("diag_step", "The step between two diag element.[default 0].")
        .SetDefault(0);
    AddAttr<float>("diag_val", "The value of diag element. [default 1.0].")
        .SetDefault(1.0f);
  }
};

class UniformRandomInplaceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

67
class UniformRandomInplaceGradOp : public framework::OperatorWithKernel {
J
JYChen 已提交
68
 public:
69
  using framework::OperatorWithKernel::OperatorWithKernel;
J
JYChen 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
};

class UniformRandomInplaceOpVarTypeInference
    : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {}
};

template <typename T>
class UniformRandomInplaceGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType(this->ForwardOpType() + "_grad");
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle
DECLARE_INPLACE_OP_INFERER(UniformRandomInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UniformRandomInplaceGradInplaceInferer,
                           {paddle::framework::GradVarName("Out"),
                            paddle::framework::GradVarName("X")});

99 100 101 102 103 104 105 106
DECLARE_INFER_SHAPE_FUNCTOR(uniform_random_inplace,
                            UniformRandomInplaceInferShapeFunctor,
                            PD_INFER_META(phi::UniformRandomInplaceInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(
    uniform_random_inplace_grad,
    UniformRandomInplaceGradInferShapeFunctor,
    PD_INFER_META(phi::UniformRandomInplaceGradInferMeta));

J
JYChen 已提交
107 108 109 110 111 112 113 114
REGISTER_OPERATOR(uniform_random_inplace,
                  paddle::operators::UniformRandomInplaceOp,
                  paddle::operators::UniformRandomInplaceOpMaker,
                  paddle::operators::UniformRandomInplaceGradOpMaker<
                      paddle::framework::OpDesc>,
                  paddle::operators::UniformRandomInplaceGradOpMaker<
                      paddle::imperative::OpBase>,
                  paddle::operators::UniformRandomInplaceOpVarTypeInference,
115 116
                  UniformRandomInplaceInferer,
                  UniformRandomInplaceInferShapeFunctor);
J
JYChen 已提交
117 118
REGISTER_OPERATOR(uniform_random_inplace_grad,
                  paddle::operators::UniformRandomInplaceGradOp,
119 120
                  UniformRandomInplaceGradInplaceInferer,
                  UniformRandomInplaceGradInferShapeFunctor);