composite_backward_api.h 24.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

17
#include "paddle/fluid/prim/api/all.h"
18
#include "paddle/fluid/prim/api/generated_prim/prim_generated_api.h"
19 20
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/ddim.h"
J
Jiabin Yang 已提交
21 22
namespace paddle {
namespace prim {
23 24 25 26 27
using Tensor = paddle::experimental::Tensor;
using IntArray =
    paddle::experimental::IntArrayBase<paddle::experimental::Tensor>;
//  This function should have as same signature as phi, which defined in
//  paddle/phi/api/backward/backward_api.h
J
Jiabin Yang 已提交
28
template <typename T>
29 30 31 32 33 34 35
void cast_grad(const Tensor& out_grad, DataType dtype, Tensor* x_grad) {
  if (x_grad) {
    auto res = cast<T>(out_grad, dtype);
    set_output<T>(res, x_grad);
  }
}
template <typename T>
J
Jiabin Yang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
void gather_grad(const Tensor& x,
                 const Tensor& index,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 bool overwrite,
                 Tensor* grad_x) {
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int> tmp_perm;

  // change axis to rank 0
  int axis_value = axis.to<int>();
  tmp_perm.push_back(axis_value);
  // make other ranks
  for (int i = 0; i < x.dims().size(); ++i) {
    if (i != axis_value) {
      tmp_perm.push_back(i);
    }
  }
  std::vector<int> reverse_perm(tmp_perm);
  // make origin ranks
  for (int i = 0; i < static_cast<int>(tmp_perm.size()); ++i) {
    reverse_perm[tmp_perm[i]] = i;
  }

  // transpose out_grad and zero grad to target rank.
  auto tmp_zero_x_grad = transpose<T>(zero_tensor, tmp_perm);
  auto tmp_out_grad = transpose<T>(out_grad, tmp_perm);
  // scatter grad to grad_x
  auto tmp_grad_x = scatter<T>(tmp_zero_x_grad, index, tmp_out_grad, false);
  auto tmp_grad_x_tranposed = transpose<T>(tmp_grad_x, reverse_perm);
  set_output<T>(tmp_grad_x_tranposed, grad_x);
}

J
Jiabin Yang 已提交
69 70
template <typename T>
void tanh_grad(const Tensor& out, const Tensor& grad_out, Tensor* grad_x) {
71
  if (!grad_x) return;
72
  auto grad_x_tmp = grad_out * (1 - out * out);
73
  set_output<T>(grad_x_tmp, grad_x);
J
Jiabin Yang 已提交
74
}
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
template <typename T>
void reshape_grad(const Tensor& x, const Tensor& grad_out, Tensor* grad_x) {
  if (grad_x) {
    auto grad_x_tmp = reshape<T>(grad_out, phi::vectorize(x.dims()));
    set_output<T>(grad_x_tmp, grad_x);
  }
}

template <typename T>
void transpose_grad(const Tensor& grad_out,
                    const std::vector<int>& perm,
                    Tensor* grad_x) {
  if (grad_x) {
    std::vector<int> reverse_perm(perm);
    // make origin ranks
    for (int i = 0; i < static_cast<int>(perm.size()); ++i) {
      reverse_perm[perm[i]] = i;
    }
    auto grad_x_tmp = transpose<T>(grad_out, reverse_perm);
    set_output<T>(grad_x_tmp, grad_x);
  }
}

99 100 101 102 103 104 105 106 107
template <typename T>
void subtract_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* dx,
                   Tensor* dy) {
  if (dy) {
    auto scale_out_grad = scale<T>(out_grad, -1.0, 0.0, true);
108
    if (x.dims() != y.dims()) {
109
      // Maybe need reduce here
110 111 112 113
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(scale_out_grad, dy);
      } else {
114 115
        auto dy_reduce_res =
            scale_out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
116
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
117
        set_output<T>(dy_tmp, dy);
118
      }
119 120 121 122 123
    } else {
      by_pass<T>(scale_out_grad, dy);
    }
  }
  if (dx) {
124
    if (y.dims() != x.dims()) {
125
      // Maybe need reduce here
126 127 128 129 130
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
131
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
132
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
133
        set_output<T>(dx_tmp, dx);
134
      }
135 136 137 138 139 140 141 142 143 144 145 146 147 148
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

template <typename T>
void add_grad(const Tensor& x,
              const Tensor& y,
              const Tensor& out_grad,
              int axis,
              Tensor* dx,
              Tensor* dy) {
  if (dy) {
149
    if (x.dims() != y.dims()) {
150
      // Maybe need reduce here
151 152 153 154 155
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dy);
      } else {
        auto dy_reduce_res =
156
            out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
157
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
158
        set_output<T>(dy_tmp, dy);
159 160
      }

161 162 163 164 165
    } else {
      by_pass<T>(out_grad, dy);
    }
  }
  if (dx) {
166
    if (y.dims() != x.dims()) {
167
      // Maybe need reduce here
168 169 170 171 172
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
173
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
174
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
175
        set_output<T>(dx_tmp, dx);
176
      }
177 178 179 180 181 182
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

183 184 185 186 187 188 189 190 191 192
template <typename T>
void sum_grad(const Tensor& x,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
R
risemeup1 已提交
193
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
194 195 196 197 198 199 200 201 202
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
203
  if (x_dim_size == 1) {
204
    x_grad_tmp = out_grad.expand(IntArray(x_dim));
205 206 207 208 209 210 211 212 213
  } else {
    if (!keepdim) {
      auto axis_ = std::vector<int64_t>();
      if (reduce_all) {
        for (int64_t i = 1; i < x_dim_size; i++) {
          axis_.push_back(i);
        }
      } else {
        axis_ = axis.GetData();
214 215 216 217 218
        for (int64_t i = 0; i < axis_size; i++) {
          if (axis[i] < 0) {
            axis_[i] = axis[i] + x_dim_size;
          }
        }
219
      }
220
      auto out_grad_ = unsqueeze<T>(out_grad, axis_);
221
      x_grad_tmp = out_grad_.expand(IntArray(x_dim));
222
    } else {
223
      x_grad_tmp = out_grad.expand(IntArray(x_dim));
224 225 226
    }
  }

227
  set_output<T>(x_grad_tmp, x_grad);
228 229
}

230 231 232 233 234 235 236 237 238 239
template <typename T>
void divide_grad(const Tensor& x,
                 const Tensor& y,
                 const Tensor& out,
                 const Tensor& out_grad,
                 int axis,
                 Tensor* dx,
                 Tensor* dy) {
  if (dy) {
    // dy = -(x/y^2) * dout
240
    auto dy_res = -(x / y.pow(2.0)) * out_grad;
241
    if (x.dims() != y.dims()) {
242
      // Maybe need reduce here
243 244
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
245
        set_output<T>(dy_res, dy);
246 247
      } else {
        auto dy_reduce_res =
248
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
249
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
250
        set_output<T>(dy_tmp, dy);
251
      }
252
    } else {
253
      set_output<T>(dy_res, dy);
254 255 256 257
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = (1/y) * dout
258
    auto one_tensor = full<T>(phi::vectorize(y.dims()), 1.0, y.dtype());
259
    auto dx_res = one_tensor / y * out_grad;
260
    if (y.dims() != x.dims()) {
261
      // Maybe need reduce here
262 263
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
264
        set_output<T>(dx_res, dx);
265 266
      } else {
        auto dx_reduce_res =
267
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
268
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
269
        set_output<T>(dx_tmp, dx);
270 271
      }

272
    } else {
273
      set_output<T>(dx_res, dx);
274 275 276
    }
  }  // indicate we will compute dx
}
277 278 279 280

template <typename T>
void sqrt_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
J
Jiabin Yang 已提交
281 282
    // This calculation is important for resnet.
    auto x_grad_tmp = (0.5 / out) * out_grad;
283
    set_output<T>(x_grad_tmp, x_grad);
284 285
  }
}
286

W
wangzhen38 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
template <typename T>
void concat_grad(const std::vector<Tensor>& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 std::vector<Tensor*> x_grad) {
  int axis_value = axis.to<int>();
  int rank = x[0].dims().size();
  if (axis_value < 0) {
    axis_value = axis_value + rank;
  }
  axis_value = axis_value > 0 ? axis_value : 0;
  std::vector<int> sections;
  int x_num = x.size();
  for (int i = 0; i < x_num; ++i) {
    sections.push_back(x[i].dims()[axis_value]);
  }
  std::vector<Tensor> x_grad_tmp =
      split<T>(out_grad, phi::IntArray(sections), axis);
  for (int i = 0; i < x_num; ++i) {
    set_output<T>(x_grad_tmp.at(i), x_grad.at(i));
  }
}

310 311 312 313 314 315 316 317
template <typename T>
void multiply_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* x_grad,
                   Tensor* y_grad) {
  if (x_grad) {
318
    auto x_grad_unreduce = out_grad * y;
319 320
    if (x_grad_unreduce.dims() != x.dims()) {
      auto axes = get_reduce_dims_from_out(x_grad_unreduce.dims(), x.dims());
321
      if (!axes.size()) {
322
        set_output<T>(x_grad_unreduce, x_grad);
323
      } else {
324 325
        auto x_grad_reduced = x_grad_unreduce.sum(
            phi::vectorize(axes), x_grad_unreduce.dtype(), false);
326 327 328
        if (x_grad_reduced.dims().size() != x.dims().size()) {
          x_grad_reduced = reshape<T>(x_grad_reduced, x.shape());
        }
329
        set_output<T>(x_grad_reduced, x_grad);
330 331
      }
    } else {
332
      set_output<T>(x_grad_unreduce, x_grad);
333 334 335
    }
  }
  if (y_grad) {
336
    auto y_grad_unreduce = out_grad * x;
337 338
    if (y_grad_unreduce.dims() != y.dims()) {
      auto axes = get_reduce_dims_from_out(y_grad_unreduce.dims(), y.dims());
339
      if (!axes.size()) {
340
        set_output<T>(y_grad_unreduce, y_grad);
341
      } else {
342 343
        auto y_grad_reduced = y_grad_unreduce.sum(
            phi::vectorize(axes), y_grad_unreduce.dtype(), false);
344 345 346
        if (y_grad_reduced.dims().size() != y.dims().size()) {
          y_grad_reduced = reshape<T>(y_grad_reduced, y.shape());
        }
347
        set_output<T>(y_grad_reduced, y_grad);
348 349
      }
    } else {
350
      set_output<T>(y_grad_unreduce, y_grad);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    }
  }
}

template <typename T>
void expand_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const IntArray& shape,
                 Tensor* x_grad) {
  if (x_grad) {
    auto out_dims = phi::make_ddim(shape.GetData());
    if (out_dims != x.dims()) {
      auto axes = get_reduce_dims(x.dims(), out_dims);
      if (!axes.size()) {
        by_pass<T>(out_grad, x_grad);
      } else {
367
        auto reduced = out_grad.sum(phi::vectorize(axes), x.dtype(), false);
368 369 370
        if (reduced.dims().size() != x.dims().size()) {
          reduced = reshape<T>(reduced, x.shape());
        }
371
        set_output<T>(reduced, x_grad);
372 373 374 375 376 377 378 379 380 381
      }
    } else {
      by_pass<T>(out_grad, x_grad);
    }
  }
}

template <typename T>
void exp_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
382
    set_output<T>(out_grad * out, x_grad);
383 384 385
  }
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
template <typename T>
void matmul_double_grad(const Tensor& x,
                        const Tensor& y,
                        const Tensor& grad_out,
                        const paddle::optional<Tensor>& grad_x_grad,
                        const paddle::optional<Tensor>& grad_y_grad,
                        bool transpose_x,
                        bool transpose_y,
                        Tensor* x_grad,
                        Tensor* y_grad,
                        Tensor* grad_out_grad) {
  // Get dims from the input x, y, output_grad
  std::vector<std::int64_t> x_dims = vectorize(x.dims());
  std::vector<std::int64_t> y_dims = vectorize(y.dims());
  std::vector<std::int64_t> grad_out_dims = vectorize(grad_out.dims());

  int x_ndim = x_dims.size();
  int y_ndim = y_dims.size();
  int dout_ndim = grad_out_dims.size();

  // prepare dims for x_ndim <= 1 || y_ndim <= 1
  Tensor x_help, y_help, xg_help, yg_help, out_help;

  if (x_ndim == 1 && y_ndim == 1) {
    transpose_x = false;
    transpose_y = false;
    x_help = reshape<T>(x, IntArray(std::vector<int64_t>({1, x_dims[0]})));
    y_help = reshape<T>(y, IntArray(std::vector<int64_t>({y_dims[0], 1})));
    if (grad_x_grad) {
      xg_help = reshape<T>(grad_x_grad.get(),
                           IntArray(std::vector<int64_t>({1, x_dims[0]})));
    }
    if (grad_y_grad) {
      yg_help = reshape<T>(grad_y_grad.get(),
                           IntArray(std::vector<int64_t>({y_dims[0], 1})));
    }
    out_help = reshape<T>(grad_out, IntArray(std::vector<int64_t>({1, 1})));

  } else if (x_ndim == 1) {
    transpose_x = false;
    x_help = reshape<T>(x, IntArray(std::vector<int64_t>({1, x_dims[0]})));
    y_help = y;
    if (grad_x_grad) {
      xg_help = reshape<T>(grad_x_grad.get(),
                           IntArray(std::vector<int64_t>({1, x_dims[0]})));
    }
    if (grad_y_grad) {
      yg_help = grad_y_grad.get();
    }
    auto tmp_grad_out_dims = grad_out_dims;
    tmp_grad_out_dims.insert(tmp_grad_out_dims.begin(), 1);
    out_help = reshape<T>(grad_out, IntArray(tmp_grad_out_dims));

  } else if (y_ndim == 1) {
    transpose_y = false;
    x_help = x;
    y_help = reshape<T>(y, IntArray(std::vector<int64_t>({y_dims[0], 1})));
    if (grad_x_grad) {
      xg_help = grad_x_grad.get();
    }
    if (grad_y_grad) {
      yg_help = reshape<T>(grad_y_grad.get(),
                           IntArray(std::vector<int64_t>({y_dims[0], 1})));
    }
    auto tmp_grad_out_dims = grad_out_dims;
    tmp_grad_out_dims.push_back(1);
    out_help = reshape<T>(grad_out, IntArray(tmp_grad_out_dims));

  } else {
    x_help = x;
    y_help = y;
    if (grad_x_grad) {
      xg_help = grad_x_grad.get();
    }
    if (grad_y_grad) {
      yg_help = grad_y_grad.get();
    }
    out_help = grad_out;
  }

  bool is_broadcast = true;
  if (x_ndim <= 2 && y_ndim <= 2) {
    is_broadcast = false;
  } else if (x_ndim != y_ndim) {
    is_broadcast = true;
  } else {
    is_broadcast = !std::equal(
        x_dims.cbegin(), x_dims.cbegin() + x_ndim - 2, y_dims.cbegin());
  }
  Tensor dx, dy, ddout_1, ddout_2, ddout;
  if (!grad_x_grad && !grad_y_grad) {
    x_grad = nullptr;
    y_grad = nullptr;
    grad_out_grad = nullptr;
    return;

  } else if (!grad_x_grad) {
    y_grad = nullptr;
    if (!transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, false, false);
      }
    } else if (!transpose_x && transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, false, true);
      }
    } else if (transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, false, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, true, false);
      }
    } else {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, true, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, true, true);
      }
    }

  } else if (!grad_y_grad) {
    x_grad = nullptr;
    if (!transpose_x && !transpose_y) {
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, true, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, false, false);
      }
    } else if (!transpose_x && transpose_y) {
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, false, true);
      }
    } else if (transpose_x && !transpose_y) {
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, false, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, true, false);
      }
    } else {
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, true, true);
      }
    }

  } else {
    if (!transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, true);
      }
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, true, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, false, false);
        ddout_2 = matmul<T>(xg_help, y_help, false, false);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else if (!transpose_x && transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, false);
      }

      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, false, true);
        ddout_2 = matmul<T>(xg_help, y_help, false, true);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else if (transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, false, true);
      }

      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, false, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, true, false);
        ddout_2 = matmul<T>(xg_help, y_help, true, false);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, true, true);
      }
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, true);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, true, true);
        ddout_2 = matmul<T>(xg_help, y_help, true, true);
        ddout = add<T>(ddout_1, ddout_2);
      }
    }
  }

  if (is_broadcast) {
    // Case3: broadcast. It need cost much time to reduce sum for the
    // broadcast and wastes the memory.
    // So we should avoid the case in reality.
    VLOG(3) << "It need cost much time to reduce sum for the broadcast and "
               "wastes the memory. So we should avoid the case in reality";
    // Reduce sum to get grad by ReduceSum
    if (x_grad) {
      auto tx_dims = x_dims;
      auto tx_ndim = x_ndim;
      auto tdout_ndim = dout_ndim;
      if (x_ndim == 1) {
        tx_dims = std::vector<int64_t>({1, x_dims[0]});
        tx_ndim = x_ndim + 1;
        tdout_ndim = dout_ndim + 1;
      }

      auto x_grad_reduce_dims =
          get_reduce_dims(dx, tdout_ndim, tx_ndim, &tx_dims);

      if (!x_grad_reduce_dims.empty()) {
        dx = sum<T>(dx, IntArray(x_grad_reduce_dims), dy.dtype(), true);
      }
      reshape<T>(dx, IntArray(tx_dims));
    }

    if (y_grad) {
      auto ty_dims = y_dims;
      auto ty_ndim = y_ndim;
      auto tdout_ndim = dout_ndim;
      if (y_ndim == 1) {
        ty_dims = std::vector<int64_t>({y_dims[0], 1});
        ty_ndim = y_ndim + 1;
        tdout_ndim = dout_ndim + 1;
      }

      auto y_grad_reduce_dims =
          get_reduce_dims(dy, tdout_ndim, ty_ndim, &ty_dims);

      if (!y_grad_reduce_dims.empty()) {
        dy = sum<T>(dy, IntArray(y_grad_reduce_dims), dy.dtype(), true);
      }
      reshape<T>(dy, IntArray(ty_dims));
    }
  }

  // recover the original dim of output (delete 1)
  std::vector<int64_t> dx_dims =
      dx.initialized() ? vectorize(dx.dims()) : std::vector<int64_t>({});
  std::vector<int64_t> dy_dims =
      dy.initialized() ? vectorize(dy.dims()) : std::vector<int64_t>({});
  std::vector<int64_t> ddout_dims =
      ddout.initialized() ? vectorize(ddout.dims()) : std::vector<int64_t>({});
  if (x_ndim == 1 && y_ndim == 1) {
    if (dx.initialized() && dx_dims[0] == 1) {
      dx = reshape<T>(dx, IntArray(x_dims));
    }
    if (dy.initialized() && dy_dims.back() == 1) {
      dy = reshape<T>(dy, IntArray(y_dims));
    }
    if (ddout.initialized() && ddout_dims == std::vector<int64_t>({1, 1})) {
      ddout = reshape<T>(ddout, IntArray(std::vector<int64_t>({1})));
    }
  } else if (x_ndim == 1) {
    if (dx.initialized() && dx_dims[0] == 1) {
      dx = reshape<T>(dx, IntArray(x_dims));
    }
    if (ddout.initialized() && ddout_dims[0] == 1) {
      ddout = reshape<T>(ddout,
                         IntArray(std::vector<int64_t>(
                             {ddout_dims.cbegin() + 1, ddout_dims.cend()})));
    }
  } else if (y_ndim == 1) {
    if (dy.initialized() && dy_dims.back() == 1) {
      dy = reshape<T>(dy, IntArray(y_dims));
    }
    if (ddout.initialized() && ddout_dims.back() == 1) {
      ddout = reshape<T>(ddout,
                         IntArray(std::vector<int64_t>(
                             {ddout_dims.cbegin(),
                              ddout_dims.cbegin() + ddout_dims.size() - 1})));
    }
  }

  if (x_grad) {
    set_output<T>(dx, x_grad);
  }
  if (y_grad) {
    set_output<T>(dy, y_grad);
  }
  if (grad_out_grad) {
    set_output<T>(ddout, grad_out_grad);
  }
}

X
xiaoguoguo626807 已提交
695 696 697 698 699 700 701 702 703 704 705 706
template <typename T>
void slice_grad(const Tensor& input,
                const Tensor& out_grad,
                const std::vector<int64_t>& axes,
                const IntArray& starts,
                const IntArray& ends,
                const std::vector<int64_t>& infer_flags,
                const std::vector<int64_t>& decrease_axis,
                Tensor* input_grad) {
  if (input_grad) {
    size_t rank = input.dims().size();
    auto out_dims = out_grad.dims();
707
    std::vector<int64_t> origin_out_shape;
X
xiaoguoguo626807 已提交
708 709 710 711 712 713 714 715
    auto in_dims = input.dims();

    auto decrease_size = decrease_axis.size();
    if (decrease_size > 0) {
      if (decrease_size == static_cast<size_t>(in_dims.size())) {
        // all dims decrease
        out_dims = phi::make_ddim(std::vector<int>(decrease_size, 1));
      } else {
716
        origin_out_shape.resize(out_dims.size() + decrease_size, -1);
X
xiaoguoguo626807 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        for (size_t i = 0; i < decrease_size; ++i) {
          origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < origin_out_shape.size(); ++i) {
          if (origin_out_shape[i] == -1) {
            origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }
        out_dims = phi::make_ddim(origin_out_shape);
      }
    }

    std::vector<int> offsets(rank, 0);
    std::vector<int> extents(rank, 0);
    for (size_t i = 0; i < rank; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    for (size_t i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      int64_t start = starts[i] < 0 ? (starts[i] + in_dims[axis]) : starts[i];
      start = std::max(start, static_cast<int64_t>(0));
      offsets[axis] = start;
    }

    std::vector<int> paddings;
    for (size_t i = 0; i < rank; ++i) {
      paddings.push_back(offsets[i]);
      paddings.push_back((in_dims[i] - out_dims[i]) - offsets[i]);
    }
750 751 752 753 754 755 756 757 758
    if (decrease_size > 0 &&
        (decrease_size != static_cast<size_t>(in_dims.size()))) {
      auto out_tmp =
          pad<T>(reshape<T>(out_grad, origin_out_shape), paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    } else {
      auto out_tmp = pad<T>(out_grad, paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    }
X
xiaoguoguo626807 已提交
759 760 761
  }
}

G
GGBond8488 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
template <typename T>
void cumsum_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 bool flatten,
                 bool exclusive,
                 bool reverse,
                 Tensor* x_grad) {
  if (x_grad) {
    auto grad = cumsum<T>(out_grad, axis, flatten, exclusive, !reverse);
    grad = reshape<T>(grad, x.shape());
    set_output<T>(grad, x_grad);
  }
}

Z
zqw_1997 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
template <typename T>
void topk_grad(const Tensor& x,
               const Tensor& indices,
               const Tensor& out_grad,
               const Scalar& k,
               const int& axis,
               const bool& largest,
               const bool& sorted,
               Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = put_along_axis<T>(zero_tensor, indices, out_grad, axis);

    set_output<T>(x_grad_tmp, x_grad);
  }
}

J
Jiabin Yang 已提交
794 795
}  // namespace prim
}  // namespace paddle