test_imperative_ptb_rnn.py 11.4 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
from paddle.fluid.imperative.nn import EMBEDDING
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.base import to_variable
import numpy as np
from paddle.fluid.backward import append_backward


class SimpleLSTMRNN(fluid.imperative.Layer):
    def __init__(self,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
        super(SimpleLSTMRNN, self).__init__()
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self.input = None
        self.num_steps = num_steps

    def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.hidden_array = []
        self.cell_array = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = fluid.layers.create_parameter(
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                name="fc_weight1_" + str(i),
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(weight_1)
            bias_1 = fluid.layers.create_parameter(
                [self._hidden_size * 4],
                dtype="float32",
                name="fc_bias1_" + str(i),
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(bias_1)

            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        res = []
        for index in range(self.num_steps):
            self.input = fluid.layers.slice(
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
            self.input = fluid.layers.reshape(
                self.input, shape=[-1, self._hidden_size])
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                print("pre_hidden shape is:{}".format(pre_hidden.shape))
                print("input shape is:{}".format(self.input.shape))
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

                nn = fluid.layers.concat([self.input, pre_hidden], 1)
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
                print("gate_input shape is: {}".format(gate_input.shape))
                print("gate_input value is :{}".format(gate_input._numpy()))
                print("gate_input desc is :{}".format(gate_input))
                # i, j, f, o = fluid.layers.split(gate_input, num_or_sections=4, dim=-1)
            #         #
            #         #         c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
            #         #             i) * fluid.layers.tanh(j)
            #         #         m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
            #         #
            #         #         self.hidden_array[k] = m
            #         #         self.cell_array[k] = c
            #         #         self.input = m
            #         #
            #         #         if self.dropout is not None and self.dropout > 0.0:
            #         #             self.input = fluid.layers.dropout(
            #         #                 self.input,
            #         #                 dropout_prob=self.dropout,
            #         #                 dropout_implementation='upscale_in_train')
            #         #
            #         #     res.append(
            #         #         fluid.layers.reshape(
            #         #             input, shape=[1, -1, self._hidden_size]))
            #         # real_res = fluid.layers.concat(res, 0)
            #         # real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
            #         # last_hidden = fluid.layers.concat(self.hidden_array, 1)
            #         # last_hidden = fluid.layers.reshape(
            #         #     last_hidden, shape=[-1, self._num_layers, self._hidden_size])
            #         # last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
            #         # last_cell = fluid.layers.concat(self.cell_array, 1)
            #         # last_cell = fluid.layers.reshape(
            #         #     last_cell, shape=[-1, self._num_layers, self._hidden_size])
            #         # last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
            #         #
            # return real_res, last_hidden, last_cell
        return [1], [2], [3]


class PtbModel(fluid.imperative.Layer):
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
        super(PtbModel, self).__init__()
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
        self.embedding = EMBEDDING(
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))

    def _build_once(self, input, label, init_hidden, init_cell):
        self.softmax_weight = fluid.layers.create_parameter(
            [self.hidden_size, self.vocab_size],
            dtype="float32",
            name="softmax_weight",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = fluid.layers.create_parameter(
            [self.vocab_size],
            dtype="float32",
            name='softmax_bias',
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):

        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        print("init_c is {}".format(init_c))
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
        projection = fluid.layers.reshape(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)
        loss.permissions = True

        return loss, last_hidden, last_cell


class TestImperativePtbRnn(unittest.TestCase):
    def test_mnist_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4

        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            sgd = SGDOptimizer(learning_rate=1e-3)
            print("q")
            for i in range(2):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                dy_param_init = dict()
                if i == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_init[param.name] = param._numpy()
                dy_loss._backward()
                sgd.minimize(dy_loss)
                dy_param_updated = dict()
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_updated[param.name] = param._numpy()


if __name__ == '__main__':
    unittest.main()