MultiGradientMachine.cpp 26.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MultiGradientMachine.h"

#include "paddle/utils/Logging.h"

#include "paddle/utils/Stat.h"

#include "NeuralNetwork.h"
#include "ParallelNeuralNetwork.h"

24 25 26
DEFINE_bool(allow_only_one_model_on_one_gpu,
            true,
            "If true, do not allow multiple models on one GPU device");
Z
zhangjinchao01 已提交
27 28 29 30 31

namespace paddle {

// get types of the parameters which need to be merged after backward()
static void fillMergeTypes(PassType passType,
32
                           std::vector<ParameterType>* mergeTypes) {
Z
zhangjinchao01 已提交
33 34 35 36 37 38
  mergeTypes->clear();
  if (passType != PASS_TEST) {
    mergeTypes->push_back(PARAMETER_GRADIENT);
  }
}

39 40
MultiGradientMachine::MultiGradientMachine(const ModelConfig& config,
                                           bool useGpu)
Z
zhangjinchao01 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54
    : useGpu_(useGpu),
      trainerBarrier_(FLAGS_trainer_count),
      allBarrier_(FLAGS_trainer_count + 1),
      inArgsCopied_(false) {
  isPassGrad_ = false;
  numThreads_ = FLAGS_trainer_count;
  if (useGpu) {
    //! TODO(yuyang18): When useGpu=false && paddle is not compiled with gpu,
    //! the hl_get_device_count will get an error result. It seems should return
    //! 0 when hppl is not compiled as gpu version.
    numDevices_ = hl_get_device_count();
  } else {
    numDevices_ = 0;
  }
F
fengjiayi 已提交
55
  ParamInitCallback mainParamInitCb = [](int paramId, Parameter* para) {
Z
zhangjinchao01 已提交
56 57 58 59 60
    // only create buf for CPU parameters
    // GPU parameters will be created in each thread
    if (para->useGpu()) return;

    if (para->isSparseRemoteUpdate()) {
61 62 63 64 65
      para->enableType(PARAMETER_VALUE,
                       FLAGS_loadsave_parameters_in_pserver
                           ? Parameter::MAT_SPARSE_ROW_PREFETCH
                           : Parameter::MAT_SPARSE_ROW_PREFETCH_FULL_SIZE);
      para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW);
Z
zhangjinchao01 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    } else if (para->isGradSparseUpdate()) {
      para->enableType(PARAMETER_VALUE);
      para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW_IDS);
      SparseRowIdsCpuMatrix* mat = dynamic_cast<SparseRowIdsCpuMatrix*>(
          para->getMat(PARAMETER_GRADIENT).get());
      mat->setNumOfThreads(FLAGS_trainer_count);
    } else if (para->isValueShared()) {
      para->enableType(PARAMETER_VALUE, Parameter::MAT_VALUE_SHARED);
      if (!para->isStatic()) {
        para->enableType(PARAMETER_GRADIENT);
      }
    } else {
      para->enableType(PARAMETER_VALUE);
      if (!para->isStatic()) {
        para->enableType(PARAMETER_GRADIENT);
      }
    }
  };

  NeuralNetwork* nn = NeuralNetwork::create(config);
  nn->init(config, mainParamInitCb);
  gradientMachine_.reset(nn);
  parameters_ = gradientMachine_->getParameters();

  numLogicalDevices_ = 0;
  if (useGpu_) {
    numLogicalDevices_ = 1;

94
    for (size_t pid = 0; pid < parameters_.size(); pid++) {
Z
zhangjinchao01 已提交
95 96 97 98 99
      if (parameters_[pid]->getConfig().device() + 1 > numLogicalDevices_) {
        numLogicalDevices_ = parameters_[pid]->getConfig().device() + 1;
      }
    }
    LOG(INFO) << "numLogicalDevices=" << numLogicalDevices_
100
              << " numThreads=" << numThreads_ << " numDevices=" << numDevices_;
Z
zhangjinchao01 已提交
101

102 103
    if (numLogicalDevices_ * numThreads_ > numDevices_ &&
        FLAGS_allow_only_one_model_on_one_gpu) {
Z
zhangjinchao01 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
      LOG(FATAL) << "trainer_count * num_devices_in_model "
                 << "(" << numThreads_ << "*" << numLogicalDevices_ << ")"
                 << "=" << numThreads_ * numLogicalDevices_
                 << " exceeds number of GPU devices(" << numDevices_ << ")";
    }
    numLogicalDevices_ = std::min(numLogicalDevices_, numDevices_);

    /* Enables direct access to memory allocations on a peer device */
    for (int i = 0; i < numThreads_; i++) {
      for (int d = 0; d < numLogicalDevices_; ++d) {
        enablePeerAccess(logicalDeviceId2RealDeviceId(d, i),
                         logicalDeviceId2RealDeviceId(d, i + 1));
        enablePeerAccess(logicalDeviceId2RealDeviceId(d, i),
                         logicalDeviceId2RealDeviceId(d, i - 1));
      }
    }
  }

  for (int i = 0; i < numThreads_; ++i) {
123
    threads_.emplace_back(new TrainerThread(config, i, this));
Z
zhangjinchao01 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  }

  bufferSizes_.resize(numLogicalDevices_, 0);
  paraMainThread_.reserve(parameters_.size());
  int pid = 0;
  for (auto& para : parameters_) {
    if (para->isStatic() || !para->useGpu()) {
      paraMainThread_.push_back(0);
    } else {
      int end = pid++ % numThreads_;
      paraMainThread_.push_back(end);
      int paraDeviceId = para->getDeviceId();
      if (paraDeviceId == -1) paraDeviceId = 0;
      paraDeviceId = paraDeviceId % numLogicalDevices_;
      if (para->getSize() > bufferSizes_[paraDeviceId]) {
        bufferSizes_[paraDeviceId] = para->getSize();
        VLOG(1) << "bufferSize[" << paraDeviceId << "]" << para->getSize();
      }
    }
  }

  // TODO(xuwei06) Instead of using maximal buffer size, we may use a smaller
  // fixed buffer size and use pipeline to dispatch parameter value and merge
  // parameter gradient, which may be faster.

  // combination of all trainers mainPara into GradientMachine parameters
  hasNonstaticCpuParamters_ = false;
151
  for (size_t pid = 0; pid < parameters_.size(); pid++) {
Z
zhangjinchao01 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    if (parameters_[pid]->useGpu()) {
      parameters_[pid] = threads_[paraMainThread_[pid]]->getParameters()[pid];
    } else if (!parameters_[pid]->isStatic()) {
      hasNonstaticCpuParamters_ = true;
    }
  }

  gradBufs_.resize(numThreads_);
  for (int i = 0; i < numThreads_; ++i) {
    gradBufs_[i].resize(numLogicalDevices_);
    for (int d = 0; d < numLogicalDevices_; ++d) {
      gradBufs_[i][d].sem.post();
    }
  }

  outArgStream_ = HPPL_STREAM_1;

169 170 171 172
  start();
}

void MultiGradientMachine::start() {
Z
zhangjinchao01 已提交
173 174 175 176 177
  for (auto& thread : threads_) {
    thread->start();
  }
}

178
void MultiGradientMachine::finish() {
179 180 181 182 183
  for (auto& thread : threads_) {
    thread->stop();
  }
}

Z
zhangjinchao01 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
std::vector<const std::vector<ParameterPtr>*>
MultiGradientMachine::getSlaveParameters() {
  std::vector<const std::vector<ParameterPtr>*> vec;
  vec.reserve(threads_.size());
  for (auto& thread : threads_) {
    vec.push_back(&thread->getParameters());
  }
  return vec;
}

void MultiGradientMachine::notifyGradientTransfer(int paramId) {
  gradQueue_.enqueue(paramId);
}

void MultiGradientMachine::allocGradBufs() {
  if (numLogicalDevices_ == 0) return;
  if (gradBufs_[0][0].bufs.size() >= mergeTypes_.size()) return;

  for (int i = 0; i < numThreads_; i++) {
    for (int d = 0; d < numLogicalDevices_; ++d) {
      if (bufferSizes_[d] == 0) continue;
      SetDevice device(logicalDeviceId2RealDeviceId(d, i));
      for (size_t j = 0; j < mergeTypes_.size(); j++) {
        gradBufs_[i][d].bufs.push_back(
208
            Vector::create(bufferSizes_[d], /* useGpu= */ true));
Z
zhangjinchao01 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
      }
    }
  }
}

void MultiGradientMachine::prefetch(const std::vector<Argument>& inArgs) {
  // Each gradient machine in threads needs to do prefetch on its own
  // part of inArgs. So we need to first divide inArgs to each thread
  inArgs_ = inArgs;
  startTask(TASK_COPY_IN_ARGS);

  for (auto& para : parameters_) {
    if (para->isSparseRemoteUpdate()) {
      auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
          para->getMat(PARAMETER_VALUE).get());
      mat->clearIndices();
    }
  }

  waitForCopyInArgs();

  // Because SparsePrefetchRowCpuMatrix can only be changed by ONE thread
  // at one time, we need to do prefetch sequentially
  for (auto& thread : threads_) {
    thread->prefetch();
  }

  for (auto& para : parameters_) {
    if (para->isSparseRemoteUpdate()) {
      auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
          para->getMat(PARAMETER_VALUE).get());
      mat->setupIndices();
      auto matGrad = dynamic_cast<SparseRowCpuMatrix*>(
          para->getMat(PARAMETER_GRADIENT).get());
      matGrad->reserveStore();
    }
  }
}

248 249 250
void MultiGradientMachine::forward(const std::vector<Argument>& inArgs,
                                   std::vector<Argument>* outArgs,
                                   PassType passType) {
Z
zhangjinchao01 已提交
251 252 253
  forwardImp(inArgs, outArgs, passType, TASK_FORWARD);
}

254 255 256 257
void MultiGradientMachine::forwardImp(const std::vector<Argument>& inArgs,
                                      std::vector<Argument>* outArgs,
                                      PassType passType,
                                      TaskType taskType) {
Z
zhangjinchao01 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  updateThreadParameters();
  passType_ = passType;

  if (!inArgsCopied_) {
    inArgs_ = inArgs;
    inArgsCopied_ = false;
  }

  fillMergeTypes(passType, &mergeTypes_);
  allocGradBufs();
  startTask(taskType);

  getOutArgs(outArgs, passType);
}

void MultiGradientMachine::backward(const UpdateCallback& callback) {
  backwardCallback_ = callback;
  startTask(TASK_BACKWARD);
  backwardImp(callback);
}

279 280 281 282
void MultiGradientMachine::forwardBackward(const std::vector<Argument>& inArgs,
                                           std::vector<Argument>* outArgs,
                                           PassType passType,
                                           const UpdateCallback& callback) {
Z
zhangjinchao01 已提交
283 284 285 286 287
  backwardCallback_ = callback;
  forwardImp(inArgs, outArgs, passType, TASK_FORWARD_BACKWARD);
  backwardImp(callback);
}

L
liaogang 已提交
288
Argument MultiGradientMachine::getLayerOutput(const std::string& layerName) {
L
liaogang 已提交
289 290
  std::vector<Argument> args;
  args.reserve(threads_.size());
291

L
liaogang 已提交
292 293
  for (auto& thread : threads_) {
    args.push_back(thread->getGradientMachine()->getLayerOutput(layerName));
294
  }
L
liaogang 已提交
295
  outLayerArgs_.concat(args, false /* use_gpu */, outArgStream_, passType_);
296

L
liaogang 已提交
297
  return outLayerArgs_;
298 299
}

300
void MultiGradientMachine::backwardImp(const UpdateCallback& callback) {
Z
zhangjinchao01 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  for (size_t i = 0; i < parameters_.size(); i++) {
    if (!parameters_[i]->useGpu() || parameters_[i]->isStatic()) continue;
    REGISTER_TIMER("controller_dequeue");
    gradQueue_.dequeue();
  }
  if (hasNonstaticCpuParamters()) {
    waitAfterMerge();
    if (backwardCallback_) {
      for (auto& para : parameters_) {
        if (!para->useGpu() && !para->isStatic()) {
          backwardCallback_(para.get());
        }
      }
    }
  }
}

void MultiGradientMachine::updateThreadParameters() {
  for (size_t pid = 0; pid < parameters_.size(); ++pid) {
    if (!parameters_[pid]->useGpu()) continue;
    if (!parameters_[pid]->isValueUpdated()) continue;
    parameters_[pid]->clearValueUpdated();
    for (int i = 0; i < (int)threads_.size(); i++) {
      threads_[i]->incUpdateCounter();
    }
    // NotifyValueReady should happen after that all threads' incUpdateCounter()
    // are called so that the counters are correct when notifyValueReady()
    // is called.
    threads_[paraMainThread_[pid]]->notifyValueReady(pid);
  }
}

void MultiGradientMachine::onPassEnd() {
  for (auto& thread : threads_) {
    thread->onPassEnd();
  }
}

Y
Yu Yang 已提交
339
Evaluator* MultiGradientMachine::makeEvaluator() const {
Z
zhangjinchao01 已提交
340 341 342
  return threads_[0]->getGradientMachine()->makeEvaluator();
}

Y
Yu Yang 已提交
343
void MultiGradientMachine::eval(Evaluator* evaluator) const {
Z
zhangjinchao01 已提交
344 345
  for (auto& thread : threads_) {
    SetDevice device(thread->getDeviceId());
H
hedaoyuan 已提交
346 347 348
    if (thread->hasInputData()) {
      thread->getGradientMachine()->eval(evaluator);
    }
Z
zhangjinchao01 已提交
349 350 351
  }
}

352 353
void MultiGradientMachine::getOutArgs(std::vector<Argument>* outArgs,
                                      PassType passType) {
Z
zhangjinchao01 已提交
354 355 356 357
  for (auto& thread : threads_) {
    REGISTER_TIMER("waitOutArgs");
    thread->waitOutArgsReady();
  }
H
Format  
hedaoyuan 已提交
358

H
hedaoyuan 已提交
359
  outArgs_.resize(threads_[threads_.size() - 1]->getOutArgs().size());
Z
zhangjinchao01 已提交
360 361 362 363 364 365

  REGISTER_TIMER("copyOutArgs");
  for (size_t i = 0; i < outArgs_.size(); ++i) {
    std::vector<Argument> args;
    args.reserve(threads_.size());
    for (auto& thread : threads_) {
H
hedaoyuan 已提交
366 367 368 369 370
      // If the thread input is empty, then the output is empty.
      auto tmp = thread->getOutArgs();
      if (tmp.size() > 0) {
        args.push_back(tmp[i]);
      }
Z
zhangjinchao01 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    }
    outArgs_[i].concat(args, useGpu_, outArgStream_, passType);
  }

  if (useGpu_) {
    hl_stream_synchronize(outArgStream_);
  }

  *outArgs = outArgs_;
}

void MultiGradientMachine::setOutputGrad(const std::vector<Argument>& args) {
  CHECK_EQ(args.size(), outArgs_.size());
  for (size_t i = 0; i < args.size(); i++) {
    outArgs_[i].grad = args[i].grad;
  }
}

void MultiGradientMachine::startTask(TaskType taskType) {
  taskType_ = taskType;
  for (auto& thread : threads_) {
    thread->notifyTaskReady();
  }
}

396 397 398
TrainerThread::TrainerThread(const ModelConfig& config,
                             int threadId,
                             MultiGradientMachine* multiMachine)
Z
zhangjinchao01 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411
    : multiMachine_(multiMachine),
      config_(config),
      threadId_(threadId),
      inArgsCopied_(false) {
  int numThreads = multiMachine->getNumThreads();

  auto& mainParas = multiMachine->getParameters();

  using std::placeholders::_1;
  using std::placeholders::_2;

  partnerId_ = mod(threadId_ - 1, numThreads);

412 413 414
  deviceId_ = !multiMachine_->useGpu()
                  ? -1
                  : multiMachine_->logicalDeviceId2RealDeviceId(0, threadId_);
Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423
  SetDevice gpuDevice(deviceId_);

  NeuralNetwork* nn = nullptr;
  if (!multiMachine->useGpu() || !FLAGS_parallel_nn) {
    nn = NeuralNetwork::create(config);
  } else {
    nn = new ParallelNeuralNetwork();
    for (auto& paraConfig : *config_.mutable_parameters()) {
      if (paraConfig.device() != -1) {
424
        paraConfig.set_device(multiMachine_->logicalDeviceId2RealDeviceId(
Z
zhangjinchao01 已提交
425 426 427 428 429
            paraConfig.device(), threadId_));
      }
    }
    for (auto& layerConfig : *config_.mutable_layers()) {
      if (layerConfig.device() != -1) {
430
        layerConfig.set_device(multiMachine_->logicalDeviceId2RealDeviceId(
Z
zhangjinchao01 已提交
431 432 433 434 435
            layerConfig.device(), threadId_));
      }
    }
  }
  // Only GPU do not share parameter values with main paramters.
436 437
  ParamInitCallback slaveParamInitCb =
      std::bind(parameterInitNN, _1, _2, &mainParas);
Z
zhangjinchao01 已提交
438 439 440 441 442 443 444 445 446
  nn->init(config_, slaveParamInitCb);
  gradientMachine_.reset(nn);
  parameters_ = gradientMachine_->getParameters();
  if (!FLAGS_parallel_nn) {
    for (auto& para : parameters_) {
      para->setDevice(deviceId_);
    }
  }

447 448
  backwardCallback_ =
      std::bind(&TrainerThread::backwardCallback, this, std::placeholders::_1);
Z
zhangjinchao01 已提交
449 450 451

  gradStream_ = HPPL_STREAM_2;
  valueStream_ = HPPL_STREAM_3;
452
  stopping_ = true;
Z
zhangjinchao01 已提交
453 454 455 456
  updateCounter_ = 0;
  parameterUpdated_ = false;
}

457
TrainerThread::~TrainerThread() { stop(); }
Z
zhangjinchao01 已提交
458 459

void TrainerThread::start() {
460 461 462 463
  if (!stopping_) return;

  stopping_ = false;

464
  gradientMachine_->start();
Z
zhangjinchao01 已提交
465

466
  computeThread_.reset(new std::thread([this]() { computeThread(); }));
Z
zhangjinchao01 已提交
467 468

  if (multiMachine_->useGpu()) {
469 470
    gradCollectThread_.reset(
        new std::thread([this]() { gradCollectThread(); }));
Z
zhangjinchao01 已提交
471

472 473
    valueDispatchThread_.reset(
        new std::thread([this]() { valueDispatchThread(); }));
Z
zhangjinchao01 已提交
474

475
    copyThread_.reset(new std::thread([this]() { copyGradToBufferThread(); }));
Z
zhangjinchao01 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
  }
}

void TrainerThread::stop() {
  if (stopping_) return;

  stopping_ = true;

  if (computeThread_) {
    taskReadySem_.post();
    computeThread_->join();
  }
  if (gradCollectThread_) {
    gradQueue_.enqueue(0);
    gradCollectThread_->join();
  }
  if (copyThread_) {
    gradBufQueue_.enqueue(0);
    copyThread_->join();
  }
  if (valueDispatchThread_) {
    valueReadyQueue_.enqueue(0);
    valueDispatchThread_->join();
  }
}

void TrainerThread::computeThread() {
  VLOG(1) << "gradComputeThread " << threadId_;

  if (deviceId_ >= 0) {
    hl_init(deviceId_);
  }

  while (true) {
    {
      REGISTER_TIMER("taskSem_wait");
      taskReadySem_.wait();
    }

    if (stopping_) break;

    switch (multiMachine_->getTaskType()) {
      case MultiGradientMachine::TASK_FORWARD_BACKWARD:
        forward();
        backward();
        break;
      case MultiGradientMachine::TASK_FORWARD:
        forward();
        break;
      case MultiGradientMachine::TASK_BACKWARD:
        backward();
        break;
      case MultiGradientMachine::TASK_COPY_IN_ARGS:
529
        batchSize_ = copyInArgs();
Z
zhangjinchao01 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
        inArgsCopied_ = true;
        multiMachine_->waitForCopyInArgs();
        break;
    }
  }
}

void TrainerThread::prefetch() {
  SetDevice setDevice(deviceId_);
  gradientMachine_->prefetch(inArgs_);
}

void TrainerThread::forward() {
  if (!inArgsCopied_) {
    REGISTER_TIMER("copyInArgs");
H
hedaoyuan 已提交
545
    batchSize_ = copyInArgs();
Z
zhangjinchao01 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
  } else {
    inArgsCopied_ = false;
  }

  if (multiMachine_->getPassType() != PASS_TEST) {
    REGISTER_TIMER("clearGradient");
    // For main parameter, the user of MultiGpuSyncMachine is responsible
    // for setting the gradient to zero
    for (size_t i = 0; i < parameters_.size(); i++) {
      if (parameters_[i]->useGpu()) {
        if (multiMachine_->paraMainThread(i) != threadId_) {
          SetDevice device(parameters_[i]->getDeviceId());
          parameters_[i]->clearGradient();
        }
      } else {
        parameters_[i]->clearGradient();
      }
    }
  }

  {
    REGISTER_TIMER("wait_value");
568
    valueReadyCond_.wait([this]() { return !parameterUpdated_; });
Z
zhangjinchao01 已提交
569 570
  }

571
  { fillMergeTypes(multiMachine_->getPassType(), &mergeTypes_); }
Z
zhangjinchao01 已提交
572 573 574

  {
    REGISTER_TIMER("thread_forward");
H
hedaoyuan 已提交
575 576
    if (batchSize_ > 0) {
      gradientMachine_->forward(
H
Format  
hedaoyuan 已提交
577
          inArgs_, &outArgs_, multiMachine_->getPassType());
H
hedaoyuan 已提交
578
    } else {
H
Format  
hedaoyuan 已提交
579
      outArgs_.clear();
H
hedaoyuan 已提交
580
    }
Z
zhangjinchao01 已提交
581 582 583 584 585 586 587 588 589
  }
  outArgsReadySem_.post();
}

void TrainerThread::backward() {
  REGISTER_TIMER("thread_backward");
  if (multiMachine_->isPassGrad()) {
    copyOutputGrad();
  }
H
hedaoyuan 已提交
590 591 592 593 594 595 596
  if (batchSize_ > 0) {
    gradientMachine_->backward(backwardCallback_);
  } else {
    for (size_t i = parameters_.size(); i > 0; i--) {
      backwardCallback(parameters_[i - 1].get());
    }
  }
Z
zhangjinchao01 已提交
597 598 599 600 601 602 603
  if (multiMachine_->hasNonstaticCpuParamters()) {
    mergeCpuGradients();
  }
}

void TrainerThread::backwardCallback(Parameter* para) {
  // CPU parameters are merged in the end
D
dangqingqing 已提交
604
  if (!para->useGpu() || para->isStatic()) return;
Z
zhangjinchao01 已提交
605 606 607 608 609

  int paramId = para->getID();
  if (multiMachine_->getNumThreads() == 1) {
    // no need to do merge if there is only one thread
    doCallback(paramId);
610 611
  } else if (threadId_ == mod(multiMachine_->paraMainThread(paramId) - 1,
                              multiMachine_->getNumThreads())) {
Z
zhangjinchao01 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    notifyCopyGradToBuffer(paramId);
  } else {
    notifyGradientCollect(paramId);
  }
}

void TrainerThread::copyGradToBufferThread() {
  VLOG(1) << "copyGradToBufferThread " << threadId_;

  if (deviceId_ >= 0) {
    hl_init(deviceId_);
  }
  auto& partnerThread = multiMachine_->getThread(partnerId_);
  auto& gradBufs = multiMachine_->getGradBuf(partnerId_);

  while (true) {
    int pid = gradBufQueue_.dequeue();
    if (stopping_) break;

    int pdeviceId = multiMachine_->realDeviceId2LogicalDeviceId(
632
        parameters_[pid]->getDeviceId(), threadId_);
Z
zhangjinchao01 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645

    auto& gradBuf = gradBufs[pdeviceId];

    {
      REGISTER_TIMER("waitBufferReady");
      gradBuf.sem.wait();
    }

    {
      REGISTER_TIMER("copyGradToBuffer");
      SetDevice setDevice(parameters_[pid]->getDeviceId());
      for (size_t i = 0; i < mergeTypes_.size(); ++i) {
        gradBuf.bufs[i]->resize(
646 647 648
            parameters_[pid]->getBuf(mergeTypes_[i])->getSize());
        gradBuf.bufs[i]->copyFrom(*parameters_[pid]->getBuf(mergeTypes_[i]),
                                  gradStream_);
Z
zhangjinchao01 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
      }
      hl_stream_synchronize(gradStream_);
    }
    partnerThread->notifyGradientCollect(pid);
  }
}

void TrainerThread::gradCollectThread() {
  VLOG(1) << "gradCollectThread " << threadId_;

  if (deviceId_ >= 0) {
    hl_init(deviceId_);
  }

  std::vector<size_t> gradReadyCount(parameters_.size(), 0);

  auto& gradBufs = multiMachine_->getGradBuf(threadId_);

  while (true) {
    int pid = gradQueue_.dequeue();
    if (stopping_) break;

    if (++gradReadyCount[pid] < 2) continue;
    gradReadyCount[pid] = 0;
    int pdeviceId = multiMachine_->realDeviceId2LogicalDeviceId(
674
        parameters_[pid]->getDeviceId(), threadId_);
Z
zhangjinchao01 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

    auto& gradBuf = gradBufs[pdeviceId];

    {
      REGISTER_TIMER("mergeGrad");
      for (size_t i = 0; i < mergeTypes_.size(); ++i) {
        ParameterType type = mergeTypes_[i];
        const VectorPtr& localGrad = parameters_[pid]->getBuf(type);
        SetDevice setDevice(parameters_[pid]->getDeviceId());
        localGrad->add(*gradBuf.bufs[i]);
      }
    }

    gradBuf.sem.post();

    if (multiMachine_->paraMainThread(pid) == threadId_) {
      doCallback(pid);
    } else {
      notifyCopyGradToBuffer(pid);
    }
  }
}

void TrainerThread::doCallback(int pid) {
  REGISTER_TIMER("callback");
  auto& gpuThreads = multiMachine_->getAllThreads();
  if (multiMachine_->getBackwardCallback()) {
    // The callback supplied by the user of MultiGradientMachine may handle
    // the parameter update using the gradient.
    multiMachine_->getBackwardCallback()(parameters_[pid].get());
    if (parameters_[pid]->isValueUpdated()) {
      parameters_[pid]->clearValueUpdated();
      for (auto& thread : gpuThreads) {
        thread->incUpdateCounter();
      }
      notifyValueReady(pid);
    }
  }
  multiMachine_->notifyGradientTransfer(pid);
}

void TrainerThread::valueDispatchThread() {
  VLOG(1) << "valueDispatchThread " << threadId_;

  if (deviceId_ >= 0) {
    hl_init(deviceId_);
  }

  auto& thread = multiMachine_->getThread(partnerId_);

  while (true) {
    int pid;
    {
      REGISTER_TIMER("value_dequeue");
      pid = valueReadyQueue_.dequeue();
    }
    if (stopping_) break;

    if (multiMachine_->paraMainThread(pid) == partnerId_) continue;

    {
      REGISTER_TIMER("copyValue");
      SetDevice setDevice(parameters_[pid]->getDeviceId());
      thread->getValueBuf(pid)->copyFrom(*getValueBuf(pid), valueStream_);
      hl_stream_synchronize(valueStream_);
    }

    thread->notifyValueReady(pid);
  }
}

void TrainerThread::notifyValueReady(int paramId) {
  if (--updateCounter_ == 0) {
748
    valueReadyCond_.notify_all([this] { parameterUpdated_ = false; });
Z
zhangjinchao01 已提交
749 750 751 752 753
  }

  notifyValueDispatch(paramId);
}

H
hedaoyuan 已提交
754
int TrainerThread::copyInArgs() {
Z
zhangjinchao01 已提交
755
  const std::vector<Argument>& fullInArgs = multiMachine_->getInArgs();
756
  int numThreads = multiMachine_->getAllThreads().size();
Z
zhangjinchao01 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769
  int32_t numSequences = fullInArgs[0].getNumSequences();
  int32_t startSeq = numSequences * threadId_ / numThreads;
  int32_t endSeq = numSequences * (threadId_ + 1) / numThreads;
  int32_t copySize = endSeq - startSeq;

  /**
   * For the first copy, need to allocate space here
   */
  if (inArgs_.size() == 0) {
    inArgs_.resize(fullInArgs.size());
  }

  if (copySize == 0) {
H
hedaoyuan 已提交
770
    return 0;
Z
zhangjinchao01 已提交
771 772
  }

773
  for (size_t i = 0; i < fullInArgs.size(); i++) {
Z
zhangjinchao01 已提交
774
    inArgs_[i].resizeAndCopyFrom(
775 776 777
        fullInArgs[i],
        startSeq,
        copySize,
Z
zhangjinchao01 已提交
778 779
        FLAGS_parallel_nn ? false : multiMachine_->useGpu());
  }
H
hedaoyuan 已提交
780
  return copySize;
Z
zhangjinchao01 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

void TrainerThread::mergeCpuGradients() {
  CHECK_EQ(mergeTypes_.size(), 1UL);
  CHECK_EQ(mergeTypes_[0], PARAMETER_GRADIENT);

  {
    REGISTER_TIMER("waitbeforeMerge");
    multiMachine_->waitBeforeMerge();
  }
  std::vector<const std::vector<ParameterPtr>*> slaveParameters =
      multiMachine_->getSlaveParameters();

  CHECK(slaveParameters.size());
  for (auto& para : multiMachine_->getNonStaticParameters()) {
    if (para->useGpu()) continue;
    if (para->isSparseRemoteUpdate()) {
      REGISTER_TIMER("mergeRemoteGradSparse");
      mergeGradSparseRemote(para.get(), slaveParameters);
    } else if (para->isGradSparseUpdate()) {
      REGISTER_TIMER("mergeGradSparse");
      mergeGradSparse(para.get(), slaveParameters);
    } else {
      REGISTER_TIMER("mergeGradDense");
      mergeGradDense(para.get(), slaveParameters);
    }
  }
  {
    REGISTER_TIMER("waitbeforeMerge");
    multiMachine_->waitAfterMerge();
  }
}

void TrainerThread::mergeGradSparse(
    Parameter* para,
    std::vector<const std::vector<ParameterPtr>*>& slaveParameters) {
  size_t pid = para->getID();
  SparseRowIdsCpuMatrix* mainMat = dynamic_cast<SparseRowIdsCpuMatrix*>(
      para->getMat(PARAMETER_GRADIENT).get());
  std::vector<uint32_t>& ids = mainMat->getIds(threadId_);

  for (auto slaveParams : slaveParameters) {
823 824
    SparseRowCpuMatrix* mat = dynamic_cast<SparseRowCpuMatrix*>(
        (*slaveParams)[pid]->getMat(PARAMETER_GRADIENT).get());
Z
zhangjinchao01 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    mat->addTo(*mainMat, ids, threadId_, multiMachine_->getNumThreads());
    // we use a sample hash method(%) instead of range partition,
    // because range partition has balance issue sometimes,
    // when feature ids are not generated from hashcode.
  }
  uniqueIds(ids);
}

void TrainerThread::mergeGradSparseRemote(
    Parameter* para,
    std::vector<const std::vector<ParameterPtr>*>& slaveParameters) {
  size_t pid = para->getID();
  SparseRowCpuMatrix* mainMat =
      dynamic_cast<SparseRowCpuMatrix*>(para->getMat(PARAMETER_GRADIENT).get());

  mainMat->checkIndices();
  mainMat->zeroMemThread(threadId_, multiMachine_->getNumThreads());

  for (auto slaveParams : slaveParameters) {
    SparseRowCpuMatrix* mat = dynamic_cast<SparseRowCpuMatrix*>(
        (*slaveParams)[pid]->getMat(PARAMETER_GRADIENT).get());
    mat->addTo(*mainMat, threadId_, multiMachine_->getNumThreads());
  }
}

void TrainerThread::mergeGradDense(
    Parameter* para,
    std::vector<const std::vector<ParameterPtr>*>& slaveParameters) {
  size_t pid = para->getID();
854 855 856 857
  auto interval = calcSplitArrayInterval(para->getSize(),
                                         (size_t)threadId_,
                                         multiMachine_->getNumThreads(),
                                         8LU /*for avx*/);
Z
zhangjinchao01 已提交
858 859 860 861 862 863 864 865 866 867 868
  size_t startSeq = interval.first;
  size_t copySize = interval.second - interval.first;

  // setup sub bufs
  CpuVector destGrad(0, nullptr);
  destGrad.subVecFrom(*para->getBuf(PARAMETER_GRADIENT), startSeq, copySize);

  // merge
  CpuVector slaveGradSub(0, nullptr);
  for (auto slaveParams : slaveParameters) {
    slaveGradSub.subVecFrom(
869
        *(*slaveParams)[pid]->getBuf(PARAMETER_GRADIENT), startSeq, copySize);
Z
zhangjinchao01 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882
    destGrad.add(slaveGradSub);
  }
}

void TrainerThread::copyOutputGrad() {
  const std::vector<Argument>& outputGradArgs = multiMachine_->outArgs_;
  int numThreads = multiMachine_->getAllThreads().size();
  int32_t numSequences = outputGradArgs[0].getNumSequences();
  int32_t startSeq = numSequences * threadId_ / numThreads;
  int32_t endSeq = numSequences * (threadId_ + 1) / numThreads;
  int32_t copySize = endSeq - startSeq;
  outArgs_.resize(outputGradArgs.size());
  for (size_t i = 0; i < outputGradArgs.size(); i++) {
883 884 885
    outArgs_[i].resizeAndCopyFrom(outputGradArgs[i],
                                  startSeq,
                                  copySize,
Z
zhangjinchao01 已提交
886 887 888 889 890 891 892 893 894
                                  multiMachine_->useGpu(),
                                  HPPL_STREAM_DEFAULT);
  }
  if (multiMachine_->useGpu()) {
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
  }
  gradientMachine_->setOutputGrad(outArgs_);
}
}  // namespace paddle