cudnn_desc.h 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_helper.h"

namespace paddle {
namespace platform {
using framework::Tensor;

template <typename T>
Q
qingqing01 已提交
32
inline cudnnDataType_t ToCudnnDataType(const T& t) {
33 34 35 36
  auto type = framework::ToDataType(t);
  return ToCudnnDataType(type);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
inline std::vector<int> TransformDimOrder(const std::vector<int>& dims) {
  std::vector<int> transformed_dims(dims.begin(), dims.end());
  int H, W, D, C;
  if (dims.size() == 4) {
    H = dims[1];
    W = dims[2];
    C = dims[3];
    transformed_dims[1] = C;
    transformed_dims[2] = H;
    transformed_dims[3] = W;
  } else {
    D = dims[1];
    H = dims[2];
    W = dims[3];
    C = dims[4];
    transformed_dims[1] = C;
    transformed_dims[2] = D;
    transformed_dims[3] = H;
    transformed_dims[4] = W;
  }
  return transformed_dims;
}

60
template <>
Q
qingqing01 已提交
61 62
inline cudnnDataType_t ToCudnnDataType(
    const framework::proto::VarType::Type& t) {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  cudnnDataType_t type = CUDNN_DATA_FLOAT;
  switch (t) {
    case framework::proto::VarType::FP16:
      type = CUDNN_DATA_HALF;
      break;
    case framework::proto::VarType::FP32:
      type = CUDNN_DATA_FLOAT;
      break;
    case framework::proto::VarType::FP64:
      type = CUDNN_DATA_DOUBLE;
      break;
    default:
      break;
  }
  return type;
}

class ActivationDescriptor {
 public:
  using T = cudnnActivationStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
86 87
        PADDLE_ENFORCE_CUDA_SUCCESS(
            dynload::cudnnDestroyActivationDescriptor(t));
88 89 90 91 92 93
        t = nullptr;
      }
    }
  };
  ActivationDescriptor() {
    T* raw_ptr;
94 95
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateActivationDescriptor(&raw_ptr));
96 97 98 99
    desc_.reset(raw_ptr);
  }
  template <typename T>
  void set(cudnnActivationMode_t mode, const T& coef) {
100
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetActivationDescriptor(
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        desc_.get(), mode, CUDNN_NOT_PROPAGATE_NAN, static_cast<double>(coef)));
  }

  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class TensorDescriptor {
 public:
  using T = cudnnTensorStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
117
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyTensorDescriptor(t));
118 119 120 121 122 123
        t = nullptr;
      }
    }
  };
  TensorDescriptor() {
    T* raw_ptr;
124
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateTensorDescriptor(&raw_ptr));
125 126 127 128 129
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }
  void set(const Tensor& tensor, const int groups = 1) {
130
    auto dims = framework::vectorize<int>(tensor.dims());
131 132 133 134 135 136 137 138 139
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
    }
    std::vector<int> dims_with_group(dims.begin(), dims.end());
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
140
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptor(
141 142 143 144
        desc_.get(), ToCudnnDataType(tensor.type()), dims_with_group.size(),
        dims_with_group.data(), strides.data()));
  }

145 146 147 148 149 150 151 152
  void set(const Tensor& tensor, const cudnnTensorFormat_t format) {
    auto dims = framework::vectorize<int>(tensor.dims());
    std::vector<int> transformed_dims;
    if (format == CUDNN_TENSOR_NHWC) {
      transformed_dims = TransformDimOrder(dims);
    } else {
      transformed_dims = dims;
    }
153
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetTensorNdDescriptorEx(
154 155 156 157
        desc_.get(), format, ToCudnnDataType(tensor.type()),
        transformed_dims.size(), transformed_dims.data()));
  }

158 159 160 161
 private:
  std::unique_ptr<T, Deleter> desc_;
};

Q
qingqing01 已提交
162 163 164 165 166 167
class FilterDescriptor {
 public:
  using T = cudnnFilterStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
168
        PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroyFilterDescriptor(t));
Q
qingqing01 已提交
169 170 171 172 173 174
        t = nullptr;
      }
    }
  };
  FilterDescriptor() {
    T* raw_ptr;
175
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnCreateFilterDescriptor(&raw_ptr));
Q
qingqing01 已提交
176 177 178 179 180 181 182
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(const Tensor& tensor, const cudnnTensorFormat_t format,
           const int groups = 1) {
183
    auto dims = framework::vectorize<int>(tensor.dims());
184 185 186 187 188 189
    std::vector<int> transformed_dims;
    if (format == CUDNN_TENSOR_NHWC) {
      transformed_dims = TransformDimOrder(dims);
    } else {
      transformed_dims = dims;
    }
Q
qingqing01 已提交
190
    if (groups > 1) {
191
      transformed_dims[1] = transformed_dims[1] / groups;
Q
qingqing01 已提交
192
    }
193
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetFilterNdDescriptor(
194 195
        desc_.get(), ToCudnnDataType(tensor.type()), format,
        transformed_dims.size(), transformed_dims.data()));
Q
qingqing01 已提交
196 197 198 199 200 201 202 203 204 205 206 207
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

class ConvolutionDescriptor {
 public:
  using T = cudnnConvolutionStruct;
  struct Deleter {
    void operator()(T* t) {
      if (t != nullptr) {
208 209
        PADDLE_ENFORCE_CUDA_SUCCESS(
            dynload::cudnnDestroyConvolutionDescriptor(t));
Q
qingqing01 已提交
210 211 212 213 214 215
        t = nullptr;
      }
    }
  };
  ConvolutionDescriptor() {
    T* raw_ptr;
216 217
    PADDLE_ENFORCE_CUDA_SUCCESS(
        dynload::cudnnCreateConvolutionDescriptor(&raw_ptr));
Q
qingqing01 已提交
218 219 220 221 222 223 224 225 226 227 228
    desc_.reset(raw_ptr);
  }
  T* desc() { return desc_.get(); }
  T* desc() const { return desc_.get(); }

  void set(cudnnDataType_t dtype, const std::vector<int>& pads,
           const std::vector<int>& strides, const std::vector<int>& dilations,
           const int groups = 1) {
    cudnnDataType_t compute_type =
        (dtype == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
    T* desc = desc_.get();
229
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnSetConvolutionNdDescriptor(
Q
qingqing01 已提交
230 231 232
        desc, pads.size(), pads.data(), strides.data(), dilations.data(),
        CUDNN_CROSS_CORRELATION, compute_type));
#if CUDNN_VERSION_MIN(7, 0, 1)
233
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
234
        platform::dynload::cudnnSetConvolutionGroupCount(desc, groups));
235
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
236
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
237
        desc, CUDNN_DEFAULT_MATH));
Q
qingqing01 已提交
238
    if (dtype == CUDNN_DATA_HALF) {
239 240 241
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(desc,
                                                         CUDNN_TENSOR_OP_MATH));
Q
qingqing01 已提交
242
    }
243
#endif
Q
qingqing01 已提交
244 245 246 247 248 249 250
#endif
  }

 private:
  std::unique_ptr<T, Deleter> desc_;
};

251 252
}  // namespace platform
}  // namespace paddle