prepared_operator.cc 18.2 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

17
#include "paddle/fluid/framework/data_type_transform.h"
18
#include "paddle/fluid/framework/details/nan_inf_utils.h"
19
#include "paddle/fluid/imperative/infer_shape_context.h"
20 21
#include "paddle/pten/common/scalar.h"
#include "paddle/utils/small_vector.h"
Q
QingshuChen 已提交
22 23 24
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu/xpu_op_list.h"
#endif
25
DECLARE_bool(check_nan_inf);
26
DECLARE_bool(run_pten_kernel);
27
DECLARE_bool(benchmark);
28

J
Jiabin Yang 已提交
29 30 31
namespace paddle {
namespace imperative {

32 33 34 35 36 37 38 39 40 41
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
42 43 44 45 46 47 48 49 50 51
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
  } else if (var.IsType<framework::SelectedRows>()) {
    return &(var.Get<framework::SelectedRows>().value());
  } else {
    return nullptr;
  }
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
static const framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

67
template <typename VarType>
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
85
      if (tensor && tensor->IsInitialized()) {
86 87 88 89 90 91 92 93
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
        framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
                                      *tensor, &out);
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
94 95 96 97 98 99 100
      }
    }
  }
}

PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
101
                       const framework::OpKernelType& kernel_type,
102
                       const framework::OperatorWithKernel::OpKernelFunc& func,
103
                       platform::DeviceContext* dev_ctx)
104 105 106 107 108 109
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
      dev_ctx_(dev_ctx) {}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
                       const framework::OpKernelType& kernel_type,
                       const framework::KernelSignature& kernel_signature,
                       const pten::Kernel& pt_kernel,
                       platform::DeviceContext* dev_ctx)
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(nullptr),
      dev_ctx_(dev_ctx),
      run_pten_kernel_(true),
      pt_kernel_signature_(kernel_signature),
      pt_kernel_(pt_kernel) {}

125 126 127 128 129
template <typename VarType>
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
                       const NameVarMap<VarType>& outs,
                       const framework::OperatorWithKernel& op,
                       const platform::Place& place,
130 131
                       const framework::AttributeMap& attrs,
                       const framework::AttributeMap& default_attrs) {
132
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
133
  auto* dev_ctx = pool.Get(place);
134

135 136 137 138 139 140 141 142
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
143 144 145 146
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
147 148
  }
#endif
J
Jiabin Yang 已提交
149

150
  // 1. get expected kernel key
151 152 153
  auto dygraph_exe_ctx = DygraphExecutionContext<VarType>(
      op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs);
  auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx);
154 155
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(op.Type())) {
    auto pt_kernel_signature = op.GetExpectedPtenKernelArgs(dygraph_exe_ctx);

    VLOG(1) << framework::KernelSignatureToString(pt_kernel_signature);

    auto pt_kernel_name = pten::KernelName(pt_kernel_signature.name);
    auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(expected_kernel_key);
    auto pt_kernel = pten::KernelFactory::Instance().SelectKernel(
        pt_kernel_name, pt_kernel_key);

    if (pt_kernel.IsValid()) {
      VLOG(1) << "Dynamic mode PrepareImpl - kernel name: " << pt_kernel_name
              << " | kernel key: " << pt_kernel_key
              << " | kernel: " << pt_kernel;

      // TODO(chenweihang): using CPUKernel when miss device kernel case
      return PreparedOp(op, ctx, expected_kernel_key, pt_kernel_signature,
                        pt_kernel, dev_ctx);
    } else {
      VLOG(1) << "Dynamic mode ChoosePtenKernel - kernel `" << pt_kernel_name
              << "` not found.";
    }
  }

181
  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
182 183
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
184 185 186 187 188
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
J
Jiabin Yang 已提交
189 190 191

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
192
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
193 194 195 196
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(op.Type()))) {
197 198 199
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
200 201 202
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
203 204 205 206
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
207 208 209
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
210 211 212
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
213
#endif
214 215
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that
  // case
216 217 218 219
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));
220

221 222 223 224
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

225
  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
226 227
}

228 229 230 231
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
232 233 234
                               const framework::AttributeMap& attrs,
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VarBase>(ins, outs, op, place, attrs, default_attrs);
235 236 237 238 239 240
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
241 242 243 244
                               const framework::AttributeMap& attrs,
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs,
                                      default_attrs);
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
template <typename VarType>
static pten::KernelContext BuildDygraphPtenKernelContext(
    const framework::KernelSignature& pt_kernel_signature,
    const pten::Kernel& pt_kernel, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
    const platform::DeviceContext& dev_ctx) {
  // TODO(chenweihang): now only work for very simple case,
  // many cases need to be deal with later:
  // 1. the input and output are not tensor
  // 2. the dispensbale, duplicable input and output
  // 3. needless attributes remove
  // 4. use pt Tensor directly
  // 5. kernel input is not DenseTensor
  pten::KernelContext op_kernel_ctx(dev_ctx);

  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& attr_names = std::get<1>(pt_kernel_signature.args);
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  auto& input_defs = pt_kernel.args_def().input_defs();
  auto& output_defs = pt_kernel.args_def().output_defs();
  auto& attr_defs = pt_kernel.args_def().attribute_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ins.at(input_names[i]);

    paddle::SmallVector<std::shared_ptr<pten::TensorBase>> tmp_inputs;
    for (auto var : ins_vector) {
      const auto& variable = var->Var();
      tmp_inputs.emplace_back(
          experimental::MakePtenTensorBaseFromVar(variable, in_def));
    }
    op_kernel_ctx.EmplaceBackInputs(std::move(tmp_inputs));
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
    auto& out_def = output_defs.at(i);
    auto& outs_vector = outs.at(output_names[i]);

    paddle::SmallVector<std::shared_ptr<pten::TensorBase>> tmp_outputs;
    for (auto var : outs_vector) {
      auto* variable = var->MutableVar();
      tmp_outputs.emplace_back(
          experimental::MakePtenTensorBaseFromVar(variable, out_def));
    }
    op_kernel_ctx.EmplaceBackOutputs(std::move(tmp_outputs));
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
    auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
    if (attr_defs[i].type_index == std::type_index(typeid(pten::Scalar))) {
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
      if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
        op_kernel_ctx.EmplaceBackAttr(
            std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "unsupported cast op attribute `%s` to Scalar when construct "
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    } else {
      // TODO(chenweihang): support other attrs later
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
        op_kernel_ctx.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
        op_kernel_ctx.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
        op_kernel_ctx.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "unsupported cast op attribute `%s` when construct "
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }

  return op_kernel_ctx;
}

350 351 352
template <typename VarType>
static void PreparedOpRunImpl(
    const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
353
    const framework::OpKernelType& kernel_type,
354
    const framework::OperatorWithKernel::OpKernelFunc& func,
355
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
356 357
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
358 359
  // TODO(zjl): remove scope in dygraph
  framework::Scope scope;
H
hong 已提交
360

361
  DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
362
                                                    &default_attrs, op.Type());
363 364
  static_cast<const framework::OperatorWithKernel&>(op).InferShape(
      &infer_shape_ctx);
H
hong 已提交
365

366
  func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
367
                                        attrs, default_attrs));
368

369 370 371 372 373
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

374 375 376 377 378 379 380 381 382 383 384 385 386
  /*For profiling/benchmark only*/
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
#if defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_CUDA_SUCCESS(hipGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
402
}
H
hong 已提交
403

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
template <typename VarType>
static void PreparedOpRunPtImpl(
    const framework::OperatorBase& op,
    const framework::KernelSignature& pt_kernel_signature,
    const pten::Kernel& pt_kernel, platform::DeviceContext* dev_ctx,
    const NameVarMap<VarType>& ins, const NameVarMap<VarType>& outs,
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
  DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
                                                    &default_attrs, op.Type());
  static_cast<const framework::OperatorWithKernel&>(op).InferShape(
      &infer_shape_ctx);

  auto op_kernel_ctx = BuildDygraphPtenKernelContext<VarType>(
      pt_kernel_signature, pt_kernel, ins, outs, attrs, default_attrs,
      *dev_ctx);

  pt_kernel(&op_kernel_ctx);

  // TODO(chenweihang): add debug flags later
  // TODO(chenweihang): deal with complex cases later
}

427 428
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
429 430
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
431 432 433 434 435 436 437
  if (run_pten_kernel_) {
    PreparedOpRunPtImpl<VarBase>(op_, pt_kernel_signature_, pt_kernel_,
                                 dev_ctx_, ins, outs, attrs, default_attrs);
  } else {
    PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
                               outs, attrs, default_attrs);
  }
438
}
H
hong 已提交
439

440 441
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
442 443
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
444 445 446 447 448 449 450 451
  if (run_pten_kernel_) {
    PreparedOpRunPtImpl<VariableWrapper>(op_, pt_kernel_signature_, pt_kernel_,
                                         dev_ctx_, ins, outs, attrs,
                                         default_attrs);
  } else {
    PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
                                       ins, outs, attrs, default_attrs);
  }
J
Jiabin Yang 已提交
452 453 454 455
}

}  // namespace imperative
}  // namespace paddle