test_nvprof.py 1.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import os
import numpy as np
import paddle.v2.fluid as fluid
import paddle.v2.fluid.profiler as profiler
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.core as core


class TestNVProf(unittest.TestCase):
    def test_nvprof(self):
        if not fluid.core.is_compiled_with_cuda():
            return
        epoc = 8
        dshape = [4, 3, 28, 28]
        data = layers.data(name='data', shape=[3, 28, 28], dtype='float32')
        conv = layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1])

        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        output_file = 'cuda_profiler.txt'
        with profiler.cuda_profiler(output_file, 'csv') as nvprof:
            for i in range(epoc):
                input = np.random.random(dshape).astype('float32')
                exe.run(fluid.default_main_program(), feed={'data': input})
        os.remove(output_file)


if __name__ == '__main__':
    unittest.main()