MathFunctions.h 57.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H

// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
// TODO this should better be moved to NumTraits
#define EIGEN_PI \
  3.141592653589793238462643383279502884197169399375105820974944592307816406L

namespace Eigen {

// On WINCE, std::abs is defined for int only, so let's defined our own
// overloads:
// This issue has been confirmed with MSVC 2008 only, but the issue might exist
// for more recent versions too.
#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC <= 1500
long abs(long x) { return (labs(x)); }
double abs(double x) { return (fabs(x)); }
float abs(float x) { return (fabsf(x)); }
long double abs(long double x) { return (fabsl(x)); }
#endif

namespace internal {

/** \internal \class global_math_functions_filtering_base
  *
  * What it does:
  * Defines a typedef 'type' as follows:
  * - if type T has a member typedef
 * Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
  *   global_math_functions_filtering_base<T>::type is a typedef for it.
  * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for
 * T.
  *
  * How it's used:
  * To allow to defined the global math functions (like sin...) in certain
 * cases, like the Array expressions.
  * When you do sin(array1+array2), the object array1+array2 has a complicated
 * expression type, all what you want to know
  * is that it inherits ArrayBase. So we implement a partial specialization of
 * sin_impl for ArrayBase<Derived>.
  * So we must make sure to use sin_impl<ArrayBase<Derived> > and not
 * sin_impl<Derived>, otherwise our partial specialization
  * won't be used. How does sin know that? That's exactly what
 * global_math_functions_filtering_base tells it.
  *
  * How it's implemented:
  * SFINAE in the style of enable_if. Highly susceptible of breaking compilers.
 * With GCC, it sure does work, but if you replace
  * the typename dummy by an integer template parameter, it doesn't work
 * anymore!
  */

template <typename T, typename dummy = void>
struct global_math_functions_filtering_base {
  typedef T type;
};

template <typename T>
struct always_void {
  typedef void type;
};

template <typename T>
struct global_math_functions_filtering_base<
    T,
    typename always_void<
        typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::
        type> {
  typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
};

#define EIGEN_MATHFUNC_IMPL(func, scalar)                             \
  Eigen::internal::func##_impl<                                       \
      typename Eigen::internal::global_math_functions_filtering_base< \
          scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar)                           \
  typename Eigen::internal::func##_retval<                            \
      typename Eigen::internal::global_math_functions_filtering_base< \
          scalar>::type>::type

/****************************************************************************
* Implementation of real                                                 *
****************************************************************************/

template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct real_default_impl {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar& x) { return x; }
};

template <typename Scalar>
struct real_default_impl<Scalar, true> {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar& x) {
    using std::real;
    return real(x);
  }
};

template <typename Scalar>
struct real_impl : real_default_impl<Scalar> {};

#if defined(EIGEN_GPU_COMPILE_PHASE)
template <typename T>
struct real_impl<std::complex<T>> {
  typedef T RealScalar;
  EIGEN_DEVICE_FUNC
  static inline T run(const std::complex<T>& x) { return x.real(); }
};
#endif

template <typename Scalar>
struct real_retval {
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of imag                                                 *
****************************************************************************/

template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct imag_default_impl {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar&) { return RealScalar(0); }
};

template <typename Scalar>
struct imag_default_impl<Scalar, true> {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar& x) {
    using std::imag;
    return imag(x);
  }
};

template <typename Scalar>
struct imag_impl : imag_default_impl<Scalar> {};

#if defined(EIGEN_GPU_COMPILE_PHASE)
template <typename T>
struct imag_impl<std::complex<T>> {
  typedef T RealScalar;
  EIGEN_DEVICE_FUNC
  static inline T run(const std::complex<T>& x) { return x.imag(); }
};
#endif

template <typename Scalar>
struct imag_retval {
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of real_ref                                             *
****************************************************************************/

template <typename Scalar>
struct real_ref_impl {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar& run(Scalar& x) {
    return reinterpret_cast<RealScalar*>(&x)[0];
  }
  EIGEN_DEVICE_FUNC
  static inline const RealScalar& run(const Scalar& x) {
    return reinterpret_cast<const RealScalar*>(&x)[0];
  }
};

template <typename Scalar>
struct real_ref_retval {
  typedef typename NumTraits<Scalar>::Real& type;
};

/****************************************************************************
* Implementation of imag_ref                                             *
****************************************************************************/

template <typename Scalar, bool IsComplex>
struct imag_ref_default_impl {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar& run(Scalar& x) {
    return reinterpret_cast<RealScalar*>(&x)[1];
  }
  EIGEN_DEVICE_FUNC
  static inline const RealScalar& run(const Scalar& x) {
    return reinterpret_cast<RealScalar*>(&x)[1];
  }
};

template <typename Scalar>
struct imag_ref_default_impl<Scalar, false> {
  EIGEN_DEVICE_FUNC
  static inline Scalar run(Scalar&) { return Scalar(0); }
  EIGEN_DEVICE_FUNC
  static inline const Scalar run(const Scalar&) { return Scalar(0); }
};

template <typename Scalar>
struct imag_ref_impl
    : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};

template <typename Scalar>
struct imag_ref_retval {
  typedef typename NumTraits<Scalar>::Real& type;
};

/****************************************************************************
* Implementation of conj                                                 *
****************************************************************************/

template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct conj_default_impl {
  EIGEN_DEVICE_FUNC
  static inline Scalar run(const Scalar& x) { return x; }
};

template <typename Scalar>
struct conj_default_impl<Scalar, true> {
  EIGEN_DEVICE_FUNC
  static inline Scalar run(const Scalar& x) {
    using std::conj;
    return conj(x);
  }
};

template <typename Scalar>
struct conj_impl : conj_default_impl<Scalar> {};

#if defined(EIGEN_GPU_COMPILE_PHASE)
template <typename T>
struct conj_impl<std::complex<T>> {
  EIGEN_DEVICE_FUNC
  static inline std::complex<T> run(const std::complex<T>& x) {
    return std::complex<T>(x.real(), -x.imag());
  }
};
#endif

template <typename Scalar>
struct conj_retval {
  typedef Scalar type;
};

/****************************************************************************
* Implementation of abs2                                                 *
****************************************************************************/

template <typename Scalar, bool IsComplex>
struct abs2_impl_default {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar& x) { return x * x; }
};

template <typename Scalar>
struct abs2_impl_default<Scalar, true>  // IsComplex
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar& x) {
    return x.real() * x.real() + x.imag() * x.imag();
  }
};

template <typename Scalar>
struct abs2_impl {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar& x) {
    return abs2_impl_default<Scalar, NumTraits<Scalar>::IsComplex>::run(x);
  }
};

template <typename Scalar>
struct abs2_retval {
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of norm1                                                *
****************************************************************************/

template <typename Scalar, bool IsComplex>
struct norm1_default_impl;

template <typename Scalar>
struct norm1_default_impl<Scalar, true> {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar& x) {
    EIGEN_USING_STD_MATH(abs);
    return abs(x.real()) + abs(x.imag());
  }
};

template <typename Scalar>
struct norm1_default_impl<Scalar, false> {
  EIGEN_DEVICE_FUNC
  static inline Scalar run(const Scalar& x) {
    EIGEN_USING_STD_MATH(abs);
    return abs(x);
  }
};

template <typename Scalar>
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};

template <typename Scalar>
struct norm1_retval {
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of hypot                                                *
****************************************************************************/

template <typename Scalar>
struct hypot_impl;

template <typename Scalar>
struct hypot_retval {
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of cast                                                 *
****************************************************************************/

template <typename OldType, typename NewType>
struct cast_impl {
  EIGEN_DEVICE_FUNC
  static inline NewType run(const OldType& x) {
    return static_cast<NewType>(x);
  }
};

// here, for once, we're plainly returning NewType: we don't want cast to do
// weird things.

template <typename OldType, typename NewType>
EIGEN_DEVICE_FUNC inline NewType cast(const OldType& x) {
  return cast_impl<OldType, NewType>::run(x);
}

/****************************************************************************
* Implementation of round                                                   *
****************************************************************************/

#if EIGEN_HAS_CXX11_MATH
template <typename Scalar>
struct round_impl {
  EIGEN_DEVICE_FUNC
  static inline Scalar run(const Scalar& x) {
    EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex),
                        NUMERIC_TYPE_MUST_BE_REAL)
    EIGEN_USING_STD_MATH(round);
    return round(x);
  }
};
#else
template <typename Scalar>
struct round_impl {
  EIGEN_DEVICE_FUNC
  static inline Scalar run(const Scalar& x) {
    EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex),
                        NUMERIC_TYPE_MUST_BE_REAL)
    EIGEN_USING_STD_MATH(floor);
    EIGEN_USING_STD_MATH(ceil);
    return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5));
  }
};
#endif

template <typename Scalar>
struct round_retval {
  typedef Scalar type;
};

/****************************************************************************
* Implementation of rint                                                    *
****************************************************************************/

template <typename Scalar>
struct rint_impl {
  EIGEN_DEVICE_FUNC
  static inline Scalar run(const Scalar& x) {
    EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex),
                        NUMERIC_TYPE_MUST_BE_REAL)
#if EIGEN_HAS_CXX11_MATH
    EIGEN_USING_STD_MATH(rint);
#endif
    return rint(x);
  }
};

#if !EIGEN_HAS_CXX11_MATH
template <>
struct rint_impl<double> {
  EIGEN_DEVICE_FUNC
  static inline double run(const double& x) { return ::rint(x); }
};
template <>
struct rint_impl<float> {
  EIGEN_DEVICE_FUNC
  static inline float run(const float& x) { return ::rintf(x); }
};
#endif

template <typename Scalar>
struct rint_retval {
  typedef Scalar type;
};

/****************************************************************************
* Implementation of arg                                                     *
****************************************************************************/

#if EIGEN_HAS_CXX11_MATH
template <typename Scalar>
struct arg_impl {
  EIGEN_DEVICE_FUNC
  static inline Scalar run(const Scalar& x) {
#if defined(EIGEN_HIP_DEVICE_COMPILE)
    // HIP does not seem to have a native device side implementation for the
    // math routine "arg"
    using std::arg;
#else
    EIGEN_USING_STD_MATH(arg);
#endif
    return arg(x);
  }
};
#else
template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct arg_default_impl {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar& x) {
    return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0);
  }
};

template <typename Scalar>
struct arg_default_impl<Scalar, true> {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_DEVICE_FUNC
  static inline RealScalar run(const Scalar& x) {
    EIGEN_USING_STD_MATH(arg);
    return arg(x);
  }
};

template <typename Scalar>
struct arg_impl : arg_default_impl<Scalar> {};
#endif

template <typename Scalar>
struct arg_retval {
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of expm1                                                   *
****************************************************************************/

// This implementation is based on GSL Math's expm1.
namespace std_fallback {
// fallback expm1 implementation in case there is no expm1(Scalar) function in
// namespace of Scalar,
// or that there is no suitable std::expm1 function available. Implementation
// attributed to Kahan. See: http://www.plunk.org/~hatch/rightway.php.
template <typename Scalar>
EIGEN_DEVICE_FUNC inline Scalar expm1(const Scalar& x) {
  EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
  typedef typename NumTraits<Scalar>::Real RealScalar;

  EIGEN_USING_STD_MATH(exp);
  Scalar u = exp(x);
  if (numext::equal_strict(u, Scalar(1))) {
    return x;
  }
  Scalar um1 = u - RealScalar(1);
  if (numext::equal_strict(um1, Scalar(-1))) {
    return RealScalar(-1);
  }

  EIGEN_USING_STD_MATH(log);
  Scalar logu = log(u);
  return numext::equal_strict(u, logu) ? u : (u - RealScalar(1)) * x / logu;
}
}

template <typename Scalar>
struct expm1_impl {
  EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) {
    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
#if EIGEN_HAS_CXX11_MATH
    using std::expm1;
#else
    using std_fallback::expm1;
#endif
    return expm1(x);
  }
};

// Specialization for complex types that are not supported by std::expm1.
template <typename RealScalar>
struct expm1_impl<std::complex<RealScalar>> {
  EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(
      const std::complex<RealScalar>& x) {
    EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar)
    RealScalar xr = x.real();
    RealScalar xi = x.imag();
    // expm1(z) = exp(z) - 1
    //          = exp(x +  i * y) - 1
    //          = exp(x) * (cos(y) + i * sin(y)) - 1
    //          = exp(x) * cos(y) - 1 + i * exp(x) * sin(y)
    // Imag(expm1(z)) = exp(x) * sin(y)
    // Real(expm1(z)) = exp(x) * cos(y) - 1
    //          = exp(x) * cos(y) - 1.
    //          = expm1(x) + exp(x) * (cos(y) - 1)
    //          = expm1(x) + exp(x) * (2 * sin(y / 2) ** 2)

    // TODO better use numext::expm1 and numext::sin (but that would require
    // forward declarations or moving this specialization down).
    RealScalar erm1 = expm1_impl<RealScalar>::run(xr);
    RealScalar er = erm1 + RealScalar(1.);
    EIGEN_USING_STD_MATH(sin);
    RealScalar sin2 = sin(xi / RealScalar(2.));
    sin2 = sin2 * sin2;
    RealScalar s = sin(xi);
    RealScalar real_part = erm1 - RealScalar(2.) * er * sin2;
    return std::complex<RealScalar>(real_part, er * s);
  }
};

template <typename Scalar>
struct expm1_retval {
  typedef Scalar type;
};

/****************************************************************************
* Implementation of log1p                                                   *
****************************************************************************/

namespace std_fallback {
// fallback log1p implementation in case there is no log1p(Scalar) function in
// namespace of Scalar,
// or that there is no suitable std::log1p function available
template <typename Scalar>
EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) {
  EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
  typedef typename NumTraits<Scalar>::Real RealScalar;
  EIGEN_USING_STD_MATH(log);
  Scalar x1p = RealScalar(1) + x;
  Scalar log_1p = log(x1p);
  const bool is_small = numext::equal_strict(x1p, Scalar(1));
  const bool is_inf = numext::equal_strict(x1p, log_1p);
  return (is_small || is_inf) ? x : x * (log_1p / (x1p - RealScalar(1)));
}
}

template <typename Scalar>
struct log1p_impl {
  EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) {
    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
#if EIGEN_HAS_CXX11_MATH
    using std::log1p;
#else
    using std_fallback::log1p;
#endif
    return log1p(x);
  }
};

// Specialization for complex types that are not supported by std::log1p.
template <typename RealScalar>
struct log1p_impl<std::complex<RealScalar>> {
  EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(
      const std::complex<RealScalar>& x) {
    EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar)
    return std_fallback::log1p(x);
  }
};

template <typename Scalar>
struct log1p_retval {
  typedef Scalar type;
};

/****************************************************************************
* Implementation of pow                                                  *
****************************************************************************/

template <typename ScalarX,
          typename ScalarY,
          bool IsInteger =
              NumTraits<ScalarX>::IsInteger&& NumTraits<ScalarY>::IsInteger>
struct pow_impl {
  // typedef Scalar retval;
  typedef typename ScalarBinaryOpTraits<
      ScalarX,
      ScalarY,
      internal::scalar_pow_op<ScalarX, ScalarY>>::ReturnType result_type;
  static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x,
                                                  const ScalarY& y) {
    EIGEN_USING_STD_MATH(pow);
    return pow(x, y);
  }
};

template <typename ScalarX, typename ScalarY>
struct pow_impl<ScalarX, ScalarY, true> {
  typedef ScalarX result_type;
  static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y) {
    ScalarX res(1);
    eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0);
    if (y & 1) res *= x;
    y >>= 1;
    while (y) {
      x *= x;
      if (y & 1) res *= x;
      y >>= 1;
    }
    return res;
  }
};

/****************************************************************************
* Implementation of random                                               *
****************************************************************************/

template <typename Scalar, bool IsComplex, bool IsInteger>
struct random_default_impl {};

template <typename Scalar>
struct random_impl : random_default_impl<Scalar,
                                         NumTraits<Scalar>::IsComplex,
                                         NumTraits<Scalar>::IsInteger> {};

template <typename Scalar>
struct random_retval {
  typedef Scalar type;
};

template <typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar)
    random(const Scalar& x, const Scalar& y);
template <typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();

template <typename Scalar>
struct random_default_impl<Scalar, false, false> {
  static inline Scalar run(const Scalar& x, const Scalar& y) {
    return x + (y - x) * Scalar(std::rand()) / Scalar(RAND_MAX);
  }
  static inline Scalar run() {
    return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
  }
};

enum {
  meta_floor_log2_terminate,
  meta_floor_log2_move_up,
  meta_floor_log2_move_down,
  meta_floor_log2_bogus
};

template <unsigned int n, int lower, int upper>
struct meta_floor_log2_selector {
  enum {
    middle = (lower + upper) / 2,
    value = (upper <= lower + 1)
                ? int(meta_floor_log2_terminate)
                : (n < (1 << middle)) ? int(meta_floor_log2_move_down)
                                      : (n == 0) ? int(meta_floor_log2_bogus)
                                                 : int(meta_floor_log2_move_up)
  };
};

template <unsigned int n,
          int lower = 0,
          int upper = sizeof(unsigned int) * CHAR_BIT - 1,
          int selector = meta_floor_log2_selector<n, lower, upper>::value>
struct meta_floor_log2 {};

template <unsigned int n, int lower, int upper>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down> {
  enum {
    value = meta_floor_log2<
        n,
        lower,
        meta_floor_log2_selector<n, lower, upper>::middle>::value
  };
};

template <unsigned int n, int lower, int upper>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up> {
  enum {
    value = meta_floor_log2<n,
                            meta_floor_log2_selector<n, lower, upper>::middle,
                            upper>::value
  };
};

template <unsigned int n, int lower, int upper>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate> {
  enum {
    value = (n >= ((unsigned int)(1) << (lower + 1))) ? lower + 1 : lower
  };
};

template <unsigned int n, int lower, int upper>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus> {
  // no value, error at compile time
};

template <typename Scalar>
struct random_default_impl<Scalar, false, true> {
  static inline Scalar run(const Scalar& x, const Scalar& y) {
    if (y <= x) return x;
    // ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself.
    typedef typename make_unsigned<Scalar>::type ScalarU;
    // ScalarX is the widest of ScalarU and unsigned int.
    // We'll deal only with ScalarX and unsigned int below thus avoiding signed
    // types and arithmetic and signed overflows (which are undefined behavior).
    typedef typename conditional<(ScalarU(-1) > unsigned(-1)),
                                 ScalarU,
                                 unsigned>::type ScalarX;
    // The following difference doesn't overflow, provided our integer types are
    // two's
    // complement and have the same number of padding bits in signed and
    // unsigned variants.
    // This is the case in most modern implementations of C++.
    ScalarX range = ScalarX(y) - ScalarX(x);
    ScalarX offset = 0;
    ScalarX divisor = 1;
    ScalarX multiplier = 1;
    const unsigned rand_max = RAND_MAX;
    if (range <= rand_max)
      divisor = (rand_max + 1) / (range + 1);
    else
      multiplier = 1 + range / (rand_max + 1);
    // Rejection sampling.
    do {
      offset = (unsigned(std::rand()) * multiplier) / divisor;
    } while (offset > range);
    return Scalar(ScalarX(x) + offset);
  }

  static inline Scalar run() {
#ifdef EIGEN_MAKING_DOCS
    return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
    enum {
        rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX) + 1>::value,
        scalar_bits = sizeof(Scalar) * CHAR_BIT,
        shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
        offset = NumTraits<Scalar>::IsSigned
                     ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits, scalar_bits) - 1))
                     : 0};
    return Scalar((std::rand() >> shift) - offset);
#endif
  }
};

template <typename Scalar>
struct random_default_impl<Scalar, true, false> {
  static inline Scalar run(const Scalar& x, const Scalar& y) {
    return Scalar(random(x.real(), y.real()), random(x.imag(), y.imag()));
  }
  static inline Scalar run() {
    typedef typename NumTraits<Scalar>::Real RealScalar;
    return Scalar(random<RealScalar>(), random<RealScalar>());
  }
};

template <typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar)
    random(const Scalar& x, const Scalar& y) {
  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
}

template <typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() {
  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}

// Implementation of is* functions

// std::is* do not work with fast-math and gcc, std::is* are available on MSVC
// 2013 and newer, as well as in clang.
#if (EIGEN_HAS_CXX11_MATH &&                               \
     !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || \
    (EIGEN_COMP_MSVC >= 1800) || (EIGEN_COMP_CLANG)
#define EIGEN_USE_STD_FPCLASSIFY 1
#else
#define EIGEN_USE_STD_FPCLASSIFY 0
#endif

template <typename T>
EIGEN_DEVICE_FUNC
    typename internal::enable_if<internal::is_integral<T>::value, bool>::type
    isnan_impl(const T&) {
  return false;
}

template <typename T>
EIGEN_DEVICE_FUNC
    typename internal::enable_if<internal::is_integral<T>::value, bool>::type
    isinf_impl(const T&) {
  return false;
}

template <typename T>
EIGEN_DEVICE_FUNC
    typename internal::enable_if<internal::is_integral<T>::value, bool>::type
    isfinite_impl(const T&) {
  return true;
}

template <typename T>
EIGEN_DEVICE_FUNC
    typename internal::enable_if<(!internal::is_integral<T>::value) &&
                                     (!NumTraits<T>::IsComplex),
                                 bool>::type
    isfinite_impl(const T& x) {
#if defined(EIGEN_GPU_COMPILE_PHASE)
  return (::isfinite)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
  using std::isfinite;
  return isfinite EIGEN_NOT_A_MACRO(x);
#else
  return x <= NumTraits<T>::highest() && x >= NumTraits<T>::lowest();
#endif
}

template <typename T>
EIGEN_DEVICE_FUNC
    typename internal::enable_if<(!internal::is_integral<T>::value) &&
                                     (!NumTraits<T>::IsComplex),
                                 bool>::type
    isinf_impl(const T& x) {
#if defined(EIGEN_GPU_COMPILE_PHASE)
  return (::isinf)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
  using std::isinf;
  return isinf EIGEN_NOT_A_MACRO(x);
#else
  return x > NumTraits<T>::highest() || x < NumTraits<T>::lowest();
#endif
}

template <typename T>
EIGEN_DEVICE_FUNC
    typename internal::enable_if<(!internal::is_integral<T>::value) &&
                                     (!NumTraits<T>::IsComplex),
                                 bool>::type
    isnan_impl(const T& x) {
#if defined(EIGEN_GPU_COMPILE_PHASE)
  return (::isnan)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
  using std::isnan;
  return isnan EIGEN_NOT_A_MACRO(x);
#else
  return x != x;
#endif
}

#if (!EIGEN_USE_STD_FPCLASSIFY)

#if EIGEN_COMP_MSVC

template <typename T>
EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x) {
  return _fpclass(x) == _FPCLASS_NINF || _fpclass(x) == _FPCLASS_PINF;
}

// MSVC defines a _isnan builtin function, but for double only
EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) {
  return _isnan(x) != 0;
}
EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) {
  return _isnan(x) != 0;
}
EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) {
  return _isnan(x) != 0;
}

EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) {
  return isinf_msvc_helper(x);
}
EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) {
  return isinf_msvc_helper(x);
}
EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) {
  return isinf_msvc_helper(x);
}

#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)

#if EIGEN_GNUC_AT_LEAST(5, 0)
#define EIGEN_TMP_NOOPT_ATTRIB \
  EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
#else
// NOTE the inline qualifier and noinline attribute are both needed: the former
// is to avoid linking issue (duplicate symbol),
//      while the second prevent too aggressive optimizations in fast-math mode:
#define EIGEN_TMP_NOOPT_ATTRIB \
  EIGEN_DEVICE_FUNC inline     \
      __attribute__((noinline, optimize("no-finite-math-only")))
#endif

template <>
EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) {
  return __builtin_isnan(x);
}
template <>
EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) {
  return __builtin_isnan(x);
}
template <>
EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) {
  return __builtin_isnan(x);
}
template <>
EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) {
  return __builtin_isinf(x);
}
template <>
EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) {
  return __builtin_isinf(x);
}
template <>
EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) {
  return __builtin_isinf(x);
}

#undef EIGEN_TMP_NOOPT_ATTRIB

#endif

#endif

// The following overload are defined at the end of this file
template <typename T>
EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
template <typename T>
EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
template <typename T>
EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);

template <typename T>
T generic_fast_tanh_float(const T& a_x);
}  // end namespace internal

/****************************************************************************
* Generic math functions                                                    *
****************************************************************************/

namespace numext {

#if (!defined(EIGEN_GPUCC))
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) {
  EIGEN_USING_STD_MATH(min);
  return min EIGEN_NOT_A_MACRO(x, y);
}

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) {
  EIGEN_USING_STD_MATH(max);
  return max EIGEN_NOT_A_MACRO(x, y);
}
#else
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) {
  return y < x ? y : x;
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float mini(const float& x,
                                                 const float& y) {
  return fminf(x, y);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double mini(const double& x,
                                                  const double& y) {
  return fmin(x, y);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE long double mini(const long double& x,
                                                       const long double& y) {
#if defined(EIGEN_HIPCC)
  // no "fminl" on HIP yet
  return (x < y) ? x : y;
#else
  return fminl(x, y);
#endif
}

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) {
  return x < y ? y : x;
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float maxi(const float& x,
                                                 const float& y) {
  return fmaxf(x, y);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double maxi(const double& x,
                                                  const double& y) {
  return fmax(x, y);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE long double maxi(const long double& x,
                                                       const long double& y) {
#if defined(EIGEN_HIPCC)
  // no "fmaxl" on HIP yet
  return (x > y) ? x : y;
#else
  return fmaxl(x, y);
#endif
}
#endif

#if defined(SYCL_DEVICE_ONLY)

#define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_char)    \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_short)   \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_int)     \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_long)
#define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_char)    \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_short)   \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_int)     \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_long)
#define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar)     \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort)    \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uint)      \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong)
#define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar)     \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort)    \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uint)      \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong)
#define SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(NAME, FUNC)  \
  SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \
  SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC)
#define SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(NAME, FUNC)  \
  SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \
  SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC)
#define SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(NAME, FUNC)     \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \
  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_double)
#define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(NAME, FUNC)     \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \
  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_double)
#define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(                \
    NAME, FUNC, RET_TYPE)                                                  \
  SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_float) \
  SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_double)

#define SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE)     \
  template <>                                                              \
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE& x) { \
    return cl::sycl::FUNC(x);                                              \
  }

#define SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, TYPE) \
  SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, TYPE, TYPE)

#define SYCL_SPECIALIZE_GEN1_BINARY_FUNC(                                   \
    NAME, FUNC, RET_TYPE, ARG_TYPE1, ARG_TYPE2)                             \
  template <>                                                               \
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE1& x,   \
                                                      const ARG_TYPE2& y) { \
    return cl::sycl::FUNC(x, y);                                            \
  }

#define SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \
  SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE, ARG_TYPE)

#define SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, TYPE) \
  SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, TYPE, TYPE)

SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(mini, min)
SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(mini, fmin)
SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(maxi, max)
SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(maxi, fmax)

#endif

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(real, Scalar)
    real(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline typename internal::add_const_on_value_type<
    EIGEN_MATHFUNC_RETVAL(real_ref, Scalar)>::type
real_ref(const Scalar& x) {
  return internal::real_ref_impl<Scalar>::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar)
    real_ref(Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(imag, Scalar)
    imag(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(arg, Scalar)
    arg(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline typename internal::add_const_on_value_type<
    EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar)>::type
imag_ref(const Scalar& x) {
  return internal::imag_ref_impl<Scalar>::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar)
    imag_ref(Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(conj, Scalar)
    conj(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar)
    abs2(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}

EIGEN_DEVICE_FUNC
inline bool abs2(bool x) { return x; }

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T absdiff(const T& x, const T& y) {
  return x > y ? x - y : y - x;
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float absdiff(const float& x,
                                                    const float& y) {
  return fabsf(x - y);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double absdiff(const double& x,
                                                     const double& y) {
  return fabs(x - y);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE long double absdiff(
    const long double& x, const long double& y) {
#if defined(EIGEN_HIPCC)
  // no "fabsl" on HIP yet
  return (x > y) ? x : y;
#else
  return fabsl(x - y);
#endif
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar)
    norm1(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar)
    hypot(const Scalar& x, const Scalar& y) {
  return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(hypot, hypot)
#endif

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar)
    log1p(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log1p, log1p)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float log1p(const float& x) {
  return ::log1pf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double log1p(const double& x) {
  return ::log1p(x);
}
#endif

template <typename ScalarX, typename ScalarY>
EIGEN_DEVICE_FUNC inline
    typename internal::pow_impl<ScalarX, ScalarY>::result_type
    pow(const ScalarX& x, const ScalarY& y) {
  return internal::pow_impl<ScalarX, ScalarY>::run(x, y);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(pow, pow)
#endif

template <typename T>
EIGEN_DEVICE_FUNC bool(isnan)(const T& x) {
  return internal::isnan_impl(x);
}
template <typename T>
EIGEN_DEVICE_FUNC bool(isinf)(const T& x) {
  return internal::isinf_impl(x);
}
template <typename T>
EIGEN_DEVICE_FUNC bool(isfinite)(const T& x) {
  return internal::isfinite_impl(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isnan, isnan, bool)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isinf, isinf, bool)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isfinite, isfinite, bool)
#endif

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(rint, Scalar)
    rint(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(rint, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(round, Scalar)
    round(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(round, round)
#endif

template <typename T>
EIGEN_DEVICE_FUNC T(floor)(const T& x) {
  EIGEN_USING_STD_MATH(floor);
  return floor(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(floor, floor)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float floor(const float& x) {
  return ::floorf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double floor(const double& x) {
  return ::floor(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC T(ceil)(const T& x) {
  EIGEN_USING_STD_MATH(ceil);
  return ceil(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(ceil, ceil)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float ceil(const float& x) {
  return ::ceilf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double ceil(const double& x) {
  return ::ceil(x);
}
#endif

/** Log base 2 for 32 bits positive integers.
  * Conveniently returns 0 for x==0. */
inline int log2(int x) {
  eigen_assert(x >= 0);
  unsigned int v(x);
  static const int table[32] = {0,  9,  1,  10, 13, 21, 2,  29, 11, 14, 16,
                                18, 22, 25, 3,  30, 8,  12, 20, 28, 15, 17,
                                24, 7,  19, 27, 23, 6,  26, 5,  4,  31};
  v |= v >> 1;
  v |= v >> 2;
  v |= v >> 4;
  v |= v >> 8;
  v |= v >> 16;
  return table[(v * 0x07C4ACDDU) >> 27];
}

/** \returns the square root of \a x.
  *
  * It is essentially equivalent to
  * \code using std::sqrt; return sqrt(x); \endcode
  * but slightly faster for float/double and some compilers (e.g., gcc), thanks
 * to
  * specializations when SSE is enabled.
  *
  * It's usage is justified in performance critical functions, like
 * norm/normalize.
  */
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sqrt(const T& x) {
  EIGEN_USING_STD_MATH(sqrt);
  return sqrt(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sqrt, sqrt)
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T log(const T& x) {
  EIGEN_USING_STD_MATH(log);
  return log(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log, log)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float log(const float& x) {
  return ::logf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double log(const double& x) {
  return ::log(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
    typename internal::enable_if<NumTraits<T>::IsSigned ||
                                     NumTraits<T>::IsComplex,
                                 typename NumTraits<T>::Real>::type
    abs(const T& x) {
  EIGEN_USING_STD_MATH(abs);
  return abs(x);
}

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
    typename internal::enable_if<!(NumTraits<T>::IsSigned ||
                                   NumTraits<T>::IsComplex),
                                 typename NumTraits<T>::Real>::type
    abs(const T& x) {
  return x;
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(abs, abs)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(abs, fabs)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float abs(const float& x) {
  return ::fabsf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double abs(const double& x) {
  return ::fabs(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float abs(const std::complex<float>& x) {
  return ::hypotf(x.real(), x.imag());
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double abs(
    const std::complex<double>& x) {
  return ::hypot(x.real(), x.imag());
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T exp(const T& x) {
  EIGEN_USING_STD_MATH(exp);
  return exp(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(exp, exp)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float exp(const float& x) {
  return ::expf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double exp(const double& x) {
  return ::exp(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::complex<float> exp(
    const std::complex<float>& x) {
  float com = ::expf(x.real());
  float res_real = com * ::cosf(x.imag());
  float res_imag = com * ::sinf(x.imag());
  return std::complex<float>(res_real, res_imag);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::complex<double> exp(
    const std::complex<double>& x) {
  double com = ::exp(x.real());
  double res_real = com * ::cos(x.imag());
  double res_imag = com * ::sin(x.imag());
  return std::complex<double>(res_real, res_imag);
}
#endif

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(expm1, Scalar)
    expm1(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(expm1, Scalar)::run(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(expm1, expm1)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float expm1(const float& x) {
  return ::expm1f(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double expm1(const double& x) {
  return ::expm1(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cos(const T& x) {
  EIGEN_USING_STD_MATH(cos);
  return cos(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cos, cos)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float cos(const float& x) {
  return ::cosf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double cos(const double& x) {
  return ::cos(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sin(const T& x) {
  EIGEN_USING_STD_MATH(sin);
  return sin(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sin, sin)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sin(const float& x) {
  return ::sinf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double sin(const double& x) {
  return ::sin(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tan(const T& x) {
  EIGEN_USING_STD_MATH(tan);
  return tan(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tan, tan)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float tan(const float& x) {
  return ::tanf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double tan(const double& x) {
  return ::tan(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T acos(const T& x) {
  EIGEN_USING_STD_MATH(acos);
  return acos(x);
}

#if EIGEN_HAS_CXX11_MATH
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T acosh(const T& x) {
  EIGEN_USING_STD_MATH(acosh);
  return acosh(x);
}
#endif

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acos, acos)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acosh, acosh)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float acos(const float& x) {
  return ::acosf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double acos(const double& x) {
  return ::acos(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asin(const T& x) {
  EIGEN_USING_STD_MATH(asin);
  return asin(x);
}

#if EIGEN_HAS_CXX11_MATH
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asinh(const T& x) {
  EIGEN_USING_STD_MATH(asinh);
  return asinh(x);
}
#endif

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asin, asin)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asinh, asinh)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float asin(const float& x) {
  return ::asinf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double asin(const double& x) {
  return ::asin(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atan(const T& x) {
  EIGEN_USING_STD_MATH(atan);
  return atan(x);
}

#if EIGEN_HAS_CXX11_MATH
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atanh(const T& x) {
  EIGEN_USING_STD_MATH(atanh);
  return atanh(x);
}
#endif

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atan, atan)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atanh, atanh)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float atan(const float& x) {
  return ::atanf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double atan(const double& x) {
  return ::atan(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cosh(const T& x) {
  EIGEN_USING_STD_MATH(cosh);
  return cosh(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cosh, cosh)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float cosh(const float& x) {
  return ::coshf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double cosh(const double& x) {
  return ::cosh(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sinh(const T& x) {
  EIGEN_USING_STD_MATH(sinh);
  return sinh(x);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sinh, sinh)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sinh(const float& x) {
  return ::sinhf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double sinh(const double& x) {
  return ::sinh(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tanh(const T& x) {
  EIGEN_USING_STD_MATH(tanh);
  return tanh(x);
}

#if (!defined(EIGEN_GPUCC)) && EIGEN_FAST_MATH && !defined(SYCL_DEVICE_ONLY)
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float tanh(float x) {
  return internal::generic_fast_tanh_float(x);
}
#endif

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tanh, tanh)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float tanh(const float& x) {
  return ::tanhf(x);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double tanh(const double& x) {
  return ::tanh(x);
}
#endif

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T fmod(const T& a, const T& b) {
  EIGEN_USING_STD_MATH(fmod);
  return fmod(a, b);
}

#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(fmod, fmod)
#endif

#if defined(EIGEN_GPUCC)
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float fmod(const float& a,
                                                 const float& b) {
  return ::fmodf(a, b);
}

template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double fmod(const double& a,
                                                  const double& b) {
  return ::fmod(a, b);
}
#endif

#if defined(SYCL_DEVICE_ONLY)
#undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY
#undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY
#undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY
#undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY
#undef SYCL_SPECIALIZE_INTEGER_TYPES_BINARY
#undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY
#undef SYCL_SPECIALIZE_FLOATING_TYPES_BINARY
#undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY
#undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE
#undef SYCL_SPECIALIZE_GEN_UNARY_FUNC
#undef SYCL_SPECIALIZE_UNARY_FUNC
#undef SYCL_SPECIALIZE_GEN1_BINARY_FUNC
#undef SYCL_SPECIALIZE_GEN2_BINARY_FUNC
#undef SYCL_SPECIALIZE_BINARY_FUNC
#endif

}  // end namespace numext

namespace internal {

template <typename T>
EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x) {
  return (numext::isfinite)(numext::real(x)) &&
         (numext::isfinite)(numext::imag(x));
}

template <typename T>
EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x) {
  return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
}

template <typename T>
EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x) {
  return ((numext::isinf)(numext::real(x)) ||
          (numext::isinf)(numext::imag(x))) &&
         (!(numext::isnan)(x));
}

/****************************************************************************
* Implementation of fuzzy comparisons                                       *
****************************************************************************/

template <typename Scalar, bool IsComplex, bool IsInteger>
struct scalar_fuzzy_default_impl {};

template <typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, false> {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template <typename OtherScalar>
  EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(
      const Scalar& x, const OtherScalar& y, const RealScalar& prec) {
    return numext::abs(x) <= numext::abs(y) * prec;
  }
  EIGEN_DEVICE_FUNC
  static inline bool isApprox(const Scalar& x,
                              const Scalar& y,
                              const RealScalar& prec) {
    return numext::abs(x - y) <=
           numext::mini(numext::abs(x), numext::abs(y)) * prec;
  }
  EIGEN_DEVICE_FUNC
  static inline bool isApproxOrLessThan(const Scalar& x,
                                        const Scalar& y,
                                        const RealScalar& prec) {
    return x <= y || isApprox(x, y, prec);
  }
};

template <typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, true> {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template <typename OtherScalar>
  EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x,
                                                         const Scalar&,
                                                         const RealScalar&) {
    return x == Scalar(0);
  }
  EIGEN_DEVICE_FUNC
  static inline bool isApprox(const Scalar& x,
                              const Scalar& y,
                              const RealScalar&) {
    return x == y;
  }
  EIGEN_DEVICE_FUNC
  static inline bool isApproxOrLessThan(const Scalar& x,
                                        const Scalar& y,
                                        const RealScalar&) {
    return x <= y;
  }
};

template <typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, true, false> {
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template <typename OtherScalar>
  EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(
      const Scalar& x, const OtherScalar& y, const RealScalar& prec) {
    return numext::abs2(x) <= numext::abs2(y) * prec * prec;
  }
  EIGEN_DEVICE_FUNC
  static inline bool isApprox(const Scalar& x,
                              const Scalar& y,
                              const RealScalar& prec) {
    return numext::abs2(x - y) <=
           numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
  }
};

template <typename Scalar>
struct scalar_fuzzy_impl
    : scalar_fuzzy_default_impl<Scalar,
                                NumTraits<Scalar>::IsComplex,
                                NumTraits<Scalar>::IsInteger> {};

template <typename Scalar, typename OtherScalar>
EIGEN_DEVICE_FUNC inline bool isMuchSmallerThan(
    const Scalar& x,
    const OtherScalar& y,
    const typename NumTraits<Scalar>::Real& precision =
        NumTraits<Scalar>::dummy_precision()) {
  return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(
      x, y, precision);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline bool isApprox(
    const Scalar& x,
    const Scalar& y,
    const typename NumTraits<Scalar>::Real& precision =
        NumTraits<Scalar>::dummy_precision()) {
  return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline bool isApproxOrLessThan(
    const Scalar& x,
    const Scalar& y,
    const typename NumTraits<Scalar>::Real& precision =
        NumTraits<Scalar>::dummy_precision()) {
  return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}

/******************************************
***  The special case of the  bool type ***
******************************************/

template <>
struct random_impl<bool> {
  static inline bool run() { return random<int>(0, 1) == 0 ? false : true; }
};

template <>
struct scalar_fuzzy_impl<bool> {
  typedef bool RealScalar;

  template <typename OtherScalar>
  EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const bool& x,
                                                         const bool&,
                                                         const bool&) {
    return !x;
  }

  EIGEN_DEVICE_FUNC
  static inline bool isApprox(bool x, bool y, bool) { return x == y; }

  EIGEN_DEVICE_FUNC
  static inline bool isApproxOrLessThan(const bool& x,
                                        const bool& y,
                                        const bool&) {
    return (!x) || y;
  }
};

}  // end namespace internal

}  // end namespace Eigen

#endif  // EIGEN_MATHFUNCTIONS_H