utils.py 14.3 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import enum
import sys
17 18
import typing

19
import numpy as np
20

21
import paddle
22
from paddle.incubate.autograd.utils import as_tensors
23 24


25 26 27
##########################################################
# Finite Difference Utils
##########################################################
28 29 30 31 32 33 34 35
def _product(t):
    if isinstance(t, int):
        return t
    else:
        return np.product(t)


def _get_item(t, idx):
36
    assert isinstance(
37 38 39 40 41
        t, paddle.fluid.framework.Variable
    ), "The first argument t must be Tensor."
    assert isinstance(
        idx, int
    ), "The second argument idx must be an int number."
42 43 44 45 46
    flat_t = paddle.reshape(t, [-1])
    return flat_t.__getitem__(idx)


def _set_item(t, idx, value):
47
    assert isinstance(
48 49 50 51 52
        t, paddle.fluid.framework.Variable
    ), "The first argument t must be Tensor."
    assert isinstance(
        idx, int
    ), "The second argument idx must be an int number."
53 54 55 56 57 58
    flat_t = paddle.reshape(t, [-1])
    flat_t.__setitem__(idx, value)
    return paddle.reshape(flat_t, t.shape)


def _compute_numerical_jacobian(func, xs, delta, np_dtype):
59 60
    xs = list(as_tensors(xs))
    ys = list(as_tensors(func(*xs)))
61 62
    fin_size = len(xs)
    fout_size = len(ys)
63
    jacobian = [[] for _ in range(fout_size)]
64
    for i in range(fout_size):
65
        jac_i = [[] for _ in range(fin_size)]
66
        for j in range(fin_size):
67 68 69
            jac_i[j] = np.zeros(
                (_product(ys[i].shape), _product(xs[j].shape)), dtype=np_dtype
            )
70 71 72 73 74 75 76
        jacobian[i] = jac_i

    for j in range(fin_size):
        for q in range(_product(xs[j].shape)):
            orig = _get_item(xs[j], q)
            x_pos = orig + delta
            xs[j] = _set_item(xs[j], q, x_pos)
77
            ys_pos = as_tensors(func(*xs))
78 79 80

            x_neg = orig - delta
            xs[j] = _set_item(xs[j], q, x_neg)
81
            ys_neg = as_tensors(func(*xs))
82 83 84 85 86 87 88

            xs[j] = _set_item(xs[j], q, orig)

            for i in range(fout_size):
                for p in range(_product(ys[i].shape)):
                    y_pos = _get_item(ys_pos[i], p)
                    y_neg = _get_item(ys_neg[i], p)
89
                    jacobian[i][j][p][q] = (y_pos - y_neg) / delta / 2.0
90 91 92 93
    return jacobian


def _compute_numerical_hessian(func, xs, delta, np_dtype):
94 95
    xs = list(as_tensors(xs))
    ys = list(as_tensors(func(*xs)))
96
    fin_size = len(xs)
97
    hessian = [[] for _ in range(fin_size)]
98
    for i in range(fin_size):
99
        hessian_i = [[] for _ in range(fin_size)]
100 101
        for j in range(fin_size):
            hessian_i[j] = np.zeros(
102 103
                (_product(xs[i].shape), _product(xs[j].shape)), dtype=np_dtype
            )
104 105 106 107 108 109 110 111 112
        hessian[i] = hessian_i

    for i in range(fin_size):
        for p in range(_product(xs[i].shape)):
            for j in range(fin_size):
                for q in range(_product(xs[j].shape)):
                    orig = _get_item(xs[j], q)
                    x_pos = orig + delta
                    xs[j] = _set_item(xs[j], q, x_pos)
113
                    jacobian_pos = _compute_numerical_jacobian(
114 115
                        func, xs, delta, np_dtype
                    )
116 117
                    x_neg = orig - delta
                    xs[j] = _set_item(xs[j], q, x_neg)
118
                    jacobian_neg = _compute_numerical_jacobian(
119 120
                        func, xs, delta, np_dtype
                    )
121 122
                    xs[j] = _set_item(xs[j], q, orig)
                    hessian[i][j][p][q] = (
123 124 125 126
                        (jacobian_pos[0][i][0][p] - jacobian_neg[0][i][0][p])
                        / delta
                        / 2.0
                    )
127
    return hessian
L
levi131 已提交
128 129


130 131 132 133 134 135 136 137
def concat_to_matrix(xs, is_batched=False):
    """Concats a tuple of tuple of Jacobian/Hessian matrix into one matrix"""
    rows = []
    for i in range(len(xs)):
        rows.append(np.concatenate([x for x in xs[i]], -1))
    return np.concatenate(rows, 1) if is_batched else np.concatenate(rows, 0)


138 139 140
def _compute_numerical_batch_jacobian(
    func, xs, delta, np_dtype, merge_batch=True
):
141
    no_batch_jacobian = _compute_numerical_jacobian(func, xs, delta, np_dtype)
142 143
    xs = list(as_tensors(xs))
    ys = list(as_tensors(func(*xs)))
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    fin_size = len(xs)
    fout_size = len(ys)
    bs = xs[0].shape[0]
    bat_jac = []
    for i in range(fout_size):
        batch_jac_i = []
        for j in range(fin_size):
            jac = no_batch_jacobian[i][j]
            jac_shape = jac.shape
            out_size = jac_shape[0] // bs
            in_size = jac_shape[1] // bs
            jac = np.reshape(jac, (bs, out_size, bs, in_size))
            batch_jac_i_j = np.zeros(shape=(out_size, bs, in_size))
            for p in range(out_size):
                for b in range(bs):
                    for q in range(in_size):
                        batch_jac_i_j[p][b][q] = jac[b][p][b][q]
161 162
            if merge_batch:
                batch_jac_i_j = np.reshape(batch_jac_i_j, (out_size, -1))
163 164 165 166 167 168 169
            batch_jac_i.append(batch_jac_i_j)
        bat_jac.append(batch_jac_i)

    return bat_jac


def _compute_numerical_batch_hessian(func, xs, delta, np_dtype):
170
    xs = list(as_tensors(xs))
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    batch_size = xs[0].shape[0]
    fin_size = len(xs)
    hessian = []
    for b in range(batch_size):
        x_l = []
        for j in range(fin_size):
            x_l.append(paddle.reshape(xs[j][b], shape=[1, -1]))
        hes_b = _compute_numerical_hessian(func, x_l, delta, np_dtype)
        if fin_size == 1:
            hessian.append(hes_b[0][0])
        else:
            hessian.append(hes_b)

    hessian_res = []
    for index in range(fin_size):
        x_reshape = paddle.reshape(xs[index], shape=[batch_size, -1])
        for index_ in range(fin_size):
            for i in range(x_reshape.shape[1]):
                tmp = []
                for j in range(batch_size):
                    if fin_size == 1:
                        tmp.extend(hessian[j][i])
                    else:
                        tmp.extend(hessian[j][i][index_][index])
                hessian_res.append(tmp)
        if fin_size == 1:
            return hessian_res

    hessian_result = []
    mid = len(hessian_res) // 2
    for i in range(mid):
        hessian_result.append(
203 204
            np.stack((hessian_res[i], hessian_res[mid + i]), axis=0)
        )
205 206 207
    return hessian_result


L
levi131 已提交
208
def _compute_numerical_vjp(func, xs, v, delta, np_dtype):
209
    xs = as_tensors(xs)
L
levi131 已提交
210
    jacobian = np.array(_compute_numerical_jacobian(func, xs, delta, np_dtype))
211 212
    if v is None:
        v = [paddle.ones_like(x) for x in xs]
L
levi131 已提交
213 214 215 216
    flat_v = np.array([v_el.numpy().reshape(-1) for v_el in v])
    vjp = [np.zeros((_product(x.shape)), dtype=np_dtype) for x in xs]
    for j in range(len(xs)):
        for q in range(_product(xs[j].shape)):
217 218 219
            vjp[j][q] = np.sum(
                jacobian[:, j, :, q].reshape(flat_v.shape) * flat_v
            )
L
levi131 已提交
220 221 222 223 224
    vjp = [vjp[j].reshape(xs[j].shape) for j in range(len(xs))]
    return vjp


def _compute_numerical_vhp(func, xs, v, delta, np_dtype):
225
    xs = list(as_tensors(xs))
L
levi131 已提交
226 227 228 229 230
    hessian = np.array(_compute_numerical_hessian(func, xs, delta, np_dtype))
    flat_v = np.array([v_el.numpy().reshape(-1) for v_el in v])
    vhp = [np.zeros((_product(x.shape)), dtype=np_dtype) for x in xs]
    for j in range(len(xs)):
        for q in range(_product(xs[j].shape)):
231 232 233
            vhp[j][q] = np.sum(
                hessian[:, j, :, q].reshape(flat_v.shape) * flat_v
            )
L
levi131 已提交
234 235
    vhp = [vhp[j].reshape(xs[j].shape) for j in range(len(xs))]
    return vhp
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287


##########################################################
# TestCases of different function.
##########################################################
def reduce(x):
    return paddle.sum(x)


def reduce_dim(x):
    return paddle.sum(x, axis=0)


def matmul(x, y):
    return paddle.matmul(x, y)


def mul(x, y):
    return x * y


def pow(x, y):
    return paddle.pow(x, y)


def o2(x, y):
    return paddle.multiply(x, y), paddle.matmul(x, y.t())


def unuse(x, y):
    return paddle.sum(x)


def nested(x):
    def inner(y):
        return x * y

    return inner


def square(x):
    return x * x


##########################################################
# Parameterized Test Utils.
##########################################################

TEST_CASE_NAME = 'suffix'


def place(devices, key='place'):
288
    """A Decorator for a class which will make the class running on different
289 290 291 292 293 294 295 296 297 298
    devices .

    Args:
        devices (Sequence[Paddle.CUDAPlace|Paddle.CPUPlace]): Device list.
        key (str, optional): Defaults to 'place'.
    """

    def decorate(cls):
        module = sys.modules[cls.__module__].__dict__
        raw_classes = {
299
            k: v for k, v in module.items() if k.startswith(cls.__name__)
300 301 302 303 304 305 306
        }

        for raw_name, raw_cls in raw_classes.items():
            for d in devices:
                test_cls = dict(raw_cls.__dict__)
                test_cls.update({key: d})
                new_name = raw_name + '.' + d.__class__.__name__
307
                module[new_name] = type(new_name, (raw_cls,), test_cls)
308 309 310 311 312 313 314
            del module[raw_name]
        return cls

    return decorate


def parameterize(fields, values=None):
315
    """Decorator for a unittest class which make the class running on different
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    test cases.

    Args:
        fields (Sequence): The feild name sequence of test cases.
        values (Sequence, optional): The test cases sequence. Defaults to None.

    """
    fields = [fields] if isinstance(fields, str) else fields
    params = [dict(zip(fields, vals)) for vals in values]

    def decorate(cls):
        test_cls_module = sys.modules[cls.__module__].__dict__
        for i, values in enumerate(params):
            test_cls = dict(cls.__dict__)
            values = {
                k: staticmethod(v) if callable(v) else v
                for k, v in values.items()
            }
            test_cls.update(values)
            name = cls.__name__ + str(i)
336 337 338 339 340
            name = (
                name + '.' + values.get('suffix')
                if values.get('suffix')
                else name
            )
341

342
            test_cls_module[name] = type(name, (cls,), test_cls)
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

        for m in list(cls.__dict__):
            if m.startswith("test"):
                delattr(cls, m)
        return cls

    return decorate


##########################################################
# Utils for transpose different Jacobian/Hessian matrix format.
##########################################################

# B is batch size, N is row size, M is column size.
MatrixFormat = enum.Enum('MatrixFormat', ('NBM', 'BNM', 'NMB', 'NM'))


def _np_transpose_matrix_format(src, src_format, des_format):
    """Transpose Jacobian/Hessian matrix format."""
    supported_format = (MatrixFormat.NBM, MatrixFormat.BNM, MatrixFormat.NMB)
    if src_format not in supported_format or des_format not in supported_format:
        raise ValueError(
            f"Supported Jacobian format is {supported_format}, but got src: {src_format}, des: {des_format}"
        )

    src_axis = {c: i for i, c in enumerate(src_format.name)}
    dst_axis = tuple(src_axis[c] for c in des_format.name)

    return np.transpose(src, dst_axis)


def _np_concat_matrix_sequence(src, src_format=MatrixFormat.NM):
375
    """Convert a sequence of sequence of Jacobian/Hessian matrix into one huge
376 377 378 379 380 381 382 383 384 385 386 387 388 389
    matrix."""

    def concat_col(xs):
        if src_format in (MatrixFormat.NBM, MatrixFormat.BNM, MatrixFormat.NM):
            return np.concatenate(xs, axis=-1)
        else:
            return np.concatenate(xs, axis=1)

    def concat_row(xs):
        if src_format in (MatrixFormat.NBM, MatrixFormat.NM, MatrixFormat.NMB):
            return np.concatenate(xs, axis=0)
        else:
            return np.concatenate(xs, axis=1)

390 391 392 393 394 395
    supported_format = (
        MatrixFormat.NBM,
        MatrixFormat.BNM,
        MatrixFormat.NMB,
        MatrixFormat.NM,
    )
396 397 398 399 400 401 402 403 404
    if src_format not in supported_format:
        raise ValueError(
            f"Supported Jacobian format is {supported_format}, but got {src_format}"
        )
    if not isinstance(src, typing.Sequence):
        return src
    if not isinstance(src[0], typing.Sequence):
        src = [src]
    return concat_row(tuple(concat_col(xs) for xs in src))
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438


##########################################################
# Utils for generating test data.
##########################################################
def gen_static_data_and_feed(xs, v, stop_gradient=True):
    feed = {}
    if isinstance(xs, typing.Sequence):
        static_xs = []
        for i, x in enumerate(xs):
            x = paddle.static.data(f"x{i}", x.shape, x.dtype)
            x.stop_gradient = stop_gradient
            static_xs.append(x)
        feed.update({f'x{idx}': value for idx, value in enumerate(xs)})
    else:
        static_xs = paddle.static.data('x', xs.shape, xs.dtype)
        static_xs.stop_gradient = stop_gradient
        feed.update({'x': xs})

    if isinstance(v, typing.Sequence):
        static_v = []
        for i, e in enumerate(v):
            e = paddle.static.data(f'v{i}', e.shape, e.dtype)
            e.stop_gradient = stop_gradient
            static_v.append(e)
        feed.update({f'v{i}': value for i, value in enumerate(v)})
    elif v is not None:
        static_v = paddle.static.data('v', v.shape, v.dtype)
        static_v.stop_gradient = stop_gradient
        feed.update({'v': v})
    else:
        static_v = v

    return feed, static_xs, static_v
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454


def gen_static_inputs_and_feed(xs, stop_gradient=True):
    feed = {}
    if isinstance(xs, typing.Sequence):
        static_xs = []
        for i, x in enumerate(xs):
            x = paddle.static.data(f"x{i}", x.shape, x.dtype)
            x.stop_gradient = stop_gradient
            static_xs.append(x)
        feed.update({f'x{idx}': value for idx, value in enumerate(xs)})
    else:
        static_xs = paddle.static.data('x', xs.shape, xs.dtype)
        static_xs.stop_gradient = stop_gradient
        feed.update({'x': xs})
    return feed, static_xs