histogram_kernel.cu 5.7 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Q
Qi Li 已提交
14

P
phlrain 已提交
15
#include "paddle/pten/kernels/funcs/math_function.h"
P
phlrain 已提交
16
#include "paddle/pten/kernels/histogram_kernel.h"
Q
Qi Li 已提交
17

P
phlrain 已提交
18 19
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
Q
Qi Li 已提交
20

21 22
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
Q
Qi Li 已提交
23

P
phlrain 已提交
24
#include "paddle/pten/kernels/funcs/eigen/common.h"
P
phlrain 已提交
25
#include "paddle/pten/kernels/funcs/eigen/eigen_function.h"
P
phlrain 已提交
26 27

namespace pten {
Q
Qi Li 已提交
28 29

using IndexType = int64_t;
P
phlrain 已提交
30
using paddle::platform::PADDLE_CUDA_NUM_THREADS;
Q
Qi Li 已提交
31 32 33 34 35 36

inline int GET_BLOCKS(const int N) {
  return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS;
}

template <typename T, typename IndexType>
P
phlrain 已提交
37 38 39
__device__ static IndexType GetBin(T input_value,
                                   T min_value,
                                   T max_value,
Q
Qi Li 已提交
40
                                   int64_t nbins) {
41 42 43 44
  IndexType bin = static_cast<int>((input_value - min_value) * nbins /
                                   (max_value - min_value));
  IndexType output_index = bin < nbins - 1 ? bin : nbins - 1;
  return output_index;
Q
Qi Li 已提交
45 46 47
}

template <typename T, typename IndexType>
P
phlrain 已提交
48 49 50 51 52 53
__global__ void KernelHistogram(const T* input,
                                const int total_elements,
                                const int64_t nbins,
                                const T min_value,
                                const T max_value,
                                int64_t* output) {
54 55 56 57 58 59 60 61 62 63 64 65 66
  extern __shared__ int64_t buf_hist[];
  for (int i = threadIdx.x; i < nbins; i += blockDim.x) {
    buf_hist[i] = 0;
  }
  __syncthreads();

  CUDA_KERNEL_LOOP(input_index, total_elements) {
    // const IndexType input_index = threadIdx.x + blockIdx.x * blockDim.x;
    const auto input_value = input[input_index];
    if (input_value >= min_value && input_value <= max_value) {
      const IndexType output_index =
          GetBin<T, IndexType>(input_value, min_value, max_value, nbins);
      paddle::platform::CudaAtomicAdd(&buf_hist[output_index], 1);
Q
Qi Li 已提交
67 68
    }
  }
69 70 71 72 73
  __syncthreads();

  for (int i = threadIdx.x; i < nbins; i += blockDim.x) {
    paddle::platform::CudaAtomicAdd(&output[i], buf_hist[i]);
  }
Q
Qi Li 已提交
74 75
}

P
phlrain 已提交
76 77
template <typename T, typename Context>
void HistogramKernel(const Context& dev_ctx,
P
phlrain 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                     const DenseTensor& input,
                     int64_t bins,
                     int min,
                     int max,
                     DenseTensor* output) {
  auto& nbins = bins;
  auto& minval = min;
  auto& maxval = max;

  const T* input_data = input.data<T>();
  const int input_numel = input.numel();

  int64_t* out_data = output->mutable_data<int64_t>(dev_ctx.GetPlace());
  pten::funcs::SetConstant<Context, int64_t>()(
      dev_ctx, output, static_cast<int64_t>(0));

  if (input_data == nullptr) return;

  T output_min = static_cast<T>(minval);
  T output_max = static_cast<T>(maxval);

  if (output_min == output_max) {
    auto input_x = pten::EigenVector<T>::Flatten(input);

    DenseTensor input_min_t, input_max_t;
    auto* input_min_data = input_min_t.mutable_data<T>({1}, dev_ctx.GetPlace());
    auto* input_max_data = input_max_t.mutable_data<T>({1}, dev_ctx.GetPlace());
    auto input_min_scala = pten::EigenScalar<T>::From(input_min_t);
    auto input_max_scala = pten::EigenScalar<T>::From(input_max_t);

    auto* place = dev_ctx.eigen_device();
    input_min_scala.device(*place) = input_x.minimum();
    input_max_scala.device(*place) = input_x.maximum();

    DenseTensor input_min_cpu, input_max_cpu;
    paddle::framework::TensorCopySync(
        input_min_t, paddle::platform::CPUPlace(), &input_min_cpu);
    paddle::framework::TensorCopySync(
        input_max_t, paddle::platform::CPUPlace(), &input_max_cpu);

    output_min = input_min_cpu.data<T>()[0];
    output_max = input_max_cpu.data<T>()[0];
  }
  if (output_min == output_max) {
    output_min = output_min - 1;
    output_max = output_max + 1;
  }
Q
Qi Li 已提交
125

P
phlrain 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  PADDLE_ENFORCE_EQ(
      (std::isinf(static_cast<float>(output_min)) ||
       std::isnan(static_cast<float>(output_max)) ||
       std::isinf(static_cast<float>(output_min)) ||
       std::isnan(static_cast<float>(output_max))),
      false,
      pten::errors::OutOfRange("range of min, max is not finite"));
  PADDLE_ENFORCE_GE(
      output_max,
      output_min,
      pten::errors::InvalidArgument(
          "max must be larger or equal to min. If min and max are both zero, "
          "the minimum and maximum values of the data are used. "
          "But received max is %d, min is %d",
          maxval,
          minval));

  auto stream = dev_ctx.stream();
  KernelHistogram<T, IndexType><<<GET_BLOCKS(input_numel),
                                  PADDLE_CUDA_NUM_THREADS,
                                  nbins * sizeof(int64_t),
                                  stream>>>(
      input_data, input_numel, nbins, output_min, output_max, out_data);
P
phlrain 已提交
149 150
}

P
phlrain 已提交
151
}  // namespace pten
P
phlrain 已提交
152 153 154 155 156 157 158 159 160

PT_REGISTER_KERNEL(histogram,
                   GPU,
                   ALL_LAYOUT,
                   pten::HistogramKernel,
                   float,
                   double,
                   int,
                   int64_t) {}