test_trt_convert_inverse.py 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16 17
from functools import partial
from typing import List
18 19 20 21 22 23

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer
24 25 26 27 28 29 30 31 32 33


class TrtConvertInverse(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        return True

    def sample_program_configs(self):
        def generate_input1():
            return np.random.random([32, 32]).astype(np.float32)

34 35 36 37 38 39 40 41 42 43
        ops_config = [
            {
                "op_type": "inverse",
                "op_inputs": {
                    "Input": ["input_data"],
                },
                "op_outputs": {"Output": ["output_data"]},
                "op_attrs": {},
            }
        ]
44 45 46 47 48 49
        ops = self.generate_op_config(ops_config)
        for i in range(10):
            program_config = ProgramConfig(
                ops=ops,
                weights={},
                inputs={
50 51 52
                    "input_data": TensorConfig(
                        data_gen=partial(generate_input1)
                    ),
53
                },
54 55
                outputs=["output_data"],
            )
56 57 58 59

            yield program_config

    def sample_predictor_configs(
60 61
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        def generate_dynamic_shape(attrs):
            self.dynamic_shape.min_input_shape = {
                "input_data": [1, 1],
            }
            self.dynamic_shape.max_input_shape = {
                "input_data": [64, 64],
            }
            self.dynamic_shape.opt_input_shape = {
                "input_data": [32, 32],
            }

        def clear_dynamic_shape():
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        attrs = [
            program_config.ops[i].attrs for i in range(len(program_config.ops))
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), (0, 3), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
87
        yield self.create_inference_config(), (0, 3), 1e-3
88 89 90 91 92 93

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), (1, 2), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
94
        yield self.create_inference_config(), (1, 2), 1e-3
95 96 97 98 99 100 101

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()